The Colin de Verdière parameter, excluded minors, and the spectral radius

Abstract In this paper we characterize graphs which maximize the spectral radius of their adjacency matrix over all graphs of Colin de Verdiere parameter at most m. We also characterize graphs of maximum spectral radius with no H as a minor when H is either K r or K s , t . Interestingly, the extremal graphs match those which maximize the number of edges over all graphs with no H as a minor when r and s are small, but not when they are larger.

[1]  L. Lovász,et al.  The Colin de Verdière graph parameter , 1999 .

[2]  Bruce A. Reed,et al.  The edge-density for K2, t minors , 2011, J. Comb. Theory, Ser. B.

[3]  A. J. Hoffman,et al.  ON EIGENVALUES AND COLORINGS OF GRAPHS, II , 1970 .

[4]  Yuan Hong,et al.  Tree-width, clique-minors, and eigenvalues , 2004, Discret. Math..

[5]  M. Chudnovsky The edge-density for K 2 , t minors , 2008 .

[6]  V. Nikiforov,et al.  The spectral radius of graphs with no K2,t minor , 2017, 1703.01839.

[7]  Michael Tait,et al.  Three conjectures in extremal spectral graph theory , 2016, J. Comb. Theory, Ser. B.

[8]  Pauline van den Driessche,et al.  Parameters Related to Tree‐Width, Zero Forcing, and Maximum Nullity of a Graph , 2013, J. Graph Theory.

[9]  R. Stanley A Bound on the Spectral Radius of Graphs with e Edges , 1987 .

[10]  Y. D. Verdière On a novel graph invariant and a planarity criterion , 1990 .

[11]  Alexandr V. Kostochka,et al.  Lower bound of the hadwiger number of graphs by their average degree , 1984, Comb..

[12]  Andrew Thomason,et al.  The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.

[13]  Gil Kalai,et al.  Bipartite Rigidity , 2013, 1312.0209.

[14]  W. Mader Homomorphieeigenschaften und mittlere Kantendichte von Graphen , 1967 .

[15]  Alexander Schrijver,et al.  A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs , 1998 .

[16]  Yves Colin de Verdière,et al.  Sur un nouvel invariant des graphes et un critère de planarité , 1990, J. Comb. Theory, Ser. B.

[17]  Joseph Samuel Myers,et al.  The extremal function for unbalanced bipartite minors , 2003, Discret. Math..

[18]  A. Kostochka The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .

[19]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[20]  V. Nikiforov A contribution to the Zarankiewicz problem , 2009, 0903.5350.

[21]  Alexandr V. Kostochka,et al.  On Ks, t-minors in graphs with given average degree , 2008, Discret. Math..

[22]  A. Nilli On the second eigenvalue of a graph , 1991 .

[23]  Robin Thomas,et al.  A survey of linkless embeddings , 1991, Graph Structure Theory.

[24]  Vladimir Nikiforov,et al.  Some Inequalities for the Largest Eigenvalue of a Graph , 2002, Combinatorics, Probability and Computing.

[25]  Andrew Thomason,et al.  Disjoint complete minors and bipartite minors , 2007, Eur. J. Comb..

[26]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[27]  László Babai,et al.  Spectral Extrema for Graphs: The Zarankiewicz Problem , 2009, Electron. J. Comb..

[28]  W. Mader Homomorphiesätze für Graphen , 1968 .

[29]  Eran Nevo,et al.  On embeddability and stresses of graphs , 2004, Comb..

[30]  A. Thomason An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.