Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay

We present a study of the sensitivity and discovery potential of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity for various background scenarios are presented, and an extension of the sensitivity formulation to the discovery potential case is also discussed. Assuming a background rate of 10 − 2 cts/(keV kg y), we find that, after 5 years of live time, CUORE will have a 1 σ sensitivity to the neutrinoless double-beta decay half-life of and thus a potential to probe the effective Majorana neutrino mass down to 40–100 meV; the sensitivity at 1.64 σ , which corresponds to 90% C.L., will be d T 0 ν 1 / 2 (1 . 64 σ ) = 9 . 5 × 10 25 y. This range is compared with the claim of observation of neutrinoless double-beta decay in 76 Ge and the preferred range in the neutrino mass parameter space from oscillation results.

D. R. Artusa | M. Deninno | N. Moggi | F. Rimondi | J. Beeman | E. Haller | R. Creswick | H. Farach | R. Maruyama | A. Woodcraft | F. Alessandria | X. Liu | I. Dafinei | L. Carbone | D. Lenz | M. Pallavicini | C. Rosenfeld | M. Clemenza | E. Guardincerri | M. Maino | A. Smith | T. Banks | F. Ferroni | S. Morganti | S. Freedman | S. Domizio | C. Gotti | E. Norman | K. Heeger | G. Bari | Andrea Giachero | S. Zucchelli | Y. Ma | E. Fiorini | K. Kazkaz | F. Avignone | J. Goett | S. Trentalange | T. Wise | B. Fujikawa | R. Kadel | M. Balata | S. Nisi | G. Pessina | Y. Kolomensky | R. Faccini | F. Bellini | K. Han | A. Bersani | S. Capelli | O. Azzolini | F. Stivanello | T. O'donnell | D. Chiesa | M. Sisti | M. Martinez | M. Franceschi | G. Ventura | V. Datskov | R. Ardito | V. Palmieri | M. Biassoni | T. Bloxham | C. Cosmelli | E. Previtali | T. Napolitano | L. Cardani | N. Casali | C. Tomei | M. Vignati | C. Bucci | A. Nucciotti | C. Brofferio | M. Faverzani | E. Ferri | O. Cremonesi | X. Cai | T. Gutierrez | A. Giuliani | M. Pavan | S. Pirrò | S. Sangiorgio | D. Fang | L. Canonica | P. Gorla | C. Nones | L. Zanotti | M. Pedretti | N. Scielzo | C. Maiano | M. Carrettoni | L. Ejzak | L. Gironi | L. Kogler | S. Newman | F. Orio | L. Pattavina | C. Rusconi | L. Taffarello | Y. Mei | G. Keppel | B. Wang | X. Cao | C. Ligi | N. Chott | D. Orlandi | J. Ouellet | G. Piperno | M. Vacri | G. Fernandes | M. Tenconi | B. Zhu | E. Sala | C. Zarra | A. Biasi | A. Dally | Y. Li | W. Tian | H. Huang | V. Rampazzo | H. Wang | T. O’Donnell | A. Smith

[1]  F. Šimkovic,et al.  Addendum to: Quasiparticle random phase approximation uncertainties and their correlations in the analysis of 0νββ decay , 2013 .

[2]  R. Robertson,et al.  Empirical Survey of Neutrinoless Double Beta Decay Matrix Elements , 2013, 1301.1323.

[3]  A. Giachero,et al.  Validation of techniques to mitigate copper surface contamination in CUORE , 2012, 1210.1107.

[4]  J. Bergstrom,et al.  Combining and comparing neutrinoless double beta decay experiments using different nuclei , 2012, 1212.4484.

[5]  O. Civitarese,et al.  Review of the properties of the 0νβ−β− nuclear matrix elements , 2012 .

[6]  F. Šimkovic,et al.  Nuclear matrix elements for neutrinoless double-beta decay and double-electron capture , 2012, 1206.0464.

[7]  J. Valle,et al.  Global status of neutrino oscillation parameters after Neutrino-2012 , 2012, 1205.4018.

[8]  Giulio Maier,et al.  CUORE crystal validation runs: Results on radioactive contamination and extrapolation to CUORE background , 2011, 1108.4757.

[9]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[10]  J. Hakala,et al.  Double-beta decay Q values of 116Cd and 130Te , 2011 .

[11]  P. Rath Uncertainties in nuclear transition matrix elements for neutrinoless ββ decay , 2010 .

[12]  L. Foggetta,et al.  Composite macro-bolometers for the rejection of surface radioactive background in rare-event experiments , 2010, 1103.1695.

[13]  G. Martínez-Pinedo,et al.  Energy density functional study of nuclear matrix elements for neutrinoless ββ decay. , 2010, Physical review letters.

[14]  Berkeley,et al.  Production of high purity TeO2 single crystals for the study of neutrinoless double beta decay , 2010, 1005.3686.

[15]  J. Beeman,et al.  Te neutrinoless double-beta decay with CUORICINO , 2010 .

[16]  M.Martinez,et al.  Monte Carlo evaluation of the external gamma, neutron and muon induced background sources in the CUORE experiment , 2009, 0912.0452.

[17]  M. Carrettoni,et al.  Background study and Monte Carlo simulations for large-mass bolometers , 2009 .

[18]  F. Nowacki,et al.  Disassembling the nuclear matrix elements of the neutrinoless ββ decay , 2008, 0801.3760.

[19]  D. Lascar,et al.  Doubter-β-decay Q values of 130Te, 128Te, and 120Te , 2009 .

[20]  A. Barabash Double-beta decay: Present status , 2008, 0807.2948.

[21]  A. Slosar,et al.  Observables sensitive to absolute neutrino masses (Addendum) , 2008 .

[22]  M. Clemenza,et al.  Control of bulk and surface radioactivity in bolometric searches for double-beta decay , 2008 .

[23]  D. R. Artusa,et al.  Results from a search for the 0 ν ββ-decay of 130 Te , 2008, 0802.3439.

[24]  Frank T. Avignone,et al.  Double Beta Decay, Majorana Neutrinos, and Neutrino Mass , 2007, 0708.1033.

[25]  K. Kroninger,et al.  Signal discovery in sparse spectra : A Bayesian analysis , 2006, physics/0608249.

[26]  S. Cowell Scaling Factor Inconsistencies in Neutrinoless Double Beta Decay , 2005, nucl-th/0512012.

[27]  E. al.,et al.  First results of the search for neutrinoless double-beta decay with the NEMO 3 detector. , 2005, Physical review letters.

[28]  F. Vissani,et al.  Implications of neutrino data circa 2005 , 2005, hep-ph/0503246.

[29]  L. Foggetta,et al.  Surface-sensitive macrobolometers for the identification of external charged particles , 2005, 0909.0806.

[30]  E. al.,et al.  CUORE: A Cryogenic Underground Observatory for Rare Events , 2005, hep-ex/0501010.

[31]  M. Rehkämper,et al.  Application of MC-ICPMS to the precise determination of tellurium isotope compositions in chondrites, iron meteorites and sulfides , 2004 .

[32]  O. Chkvorets,et al.  Data acquisition and analysis of the 76Ge double beta experiment in Gran Sasso 1990–2003 , 2004, hep-ph/0403018.

[33]  D. R. Artusa,et al.  First results on neutrinoless double beta decay of 130Te with the calorimetric CUORICINO experiment , 2003 .

[34]  R. Cerulli,et al.  Investigation of ββ decay modes in 134 Xe and 136 Xe , 2002 .

[35]  H. Harney Reply to the Comment on "Evidence for Neutrinoless Double Beta Decay" [Mod. Phys. Lett. A 16(2001)2409] , 2002, hep-ph/0205293.

[36]  R. Kouzes,et al.  Comment on "Evidence for Neutrinoless Double Beta Decay" , 2002, hep-ex/0202018.

[37]  H. Klapdor-kleingrothaus,et al.  Status of Evidence for Neutrinoless Double Beta Decay , 2002 .

[38]  M. Barucci,et al.  Physics Potential and Prospects for CUORE and CUORICINO experiments , 2001, hep-ph/0108146.

[39]  H. Klapdor-kleingrothaus,et al.  Latest results from the HEIDELBERG-MOSCOW double beta decay experiment , 2001, hep-ph/0103062.

[40]  J. Beeman,et al.  CUORE: A cryogenic underground observatory for rare events , 2002, hep-ex/0212053.

[41]  D. Camin,et al.  Preliminary results on double beta decay of 130Te with an array of twenty cryogenic detectors , 1998 .

[42]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[43]  S. Navas,et al.  Discovery limits in prospective studies , 1996 .

[44]  Angelo Alessandrello,et al.  First tests on a large mass, low temperature array detector , 1995 .

[45]  Steven R. Elliott,et al.  Double Beta Decay , 2011, 1110.6159.

[46]  D. Camin,et al.  A search for neutrinoless double beta decay of 130Te with a thermal detector , 1992 .