Feature selection for face recognition: a memetic algorithmic approach

The eigenface method that uses principal component analysis (PCA) has been the standard and popular method used in face recognition. This paper presents a PCA - memetic algorithm (PCA-MA) approach for feature selection. PCA has been extended by MAs where the former was used for feature extraction/dimensionality reduction and the latter exploited for feature selection. Simulations were performed over ORL and YaleB face databases using Euclidean norm as the classifier. It was found that as far as the recognition rate is concerned, PCA-MA completely outperforms the eigenface method. We compared the performance of PCA extended with genetic algorithm (PCA-GA) with our proposed PCA-MA method. The results also clearly established the supremacy of the PCA-MA method over the PCA-GA method. We further extended linear discriminant analysis (LDA) and kernel principal component analysis (KPCA) approaches with the MA and observed significant improvement in recognition rate with fewer features. This paper also compares the performance of PCA-MA, LDA-MA and KPCA-MA approaches.

[1]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[2]  Donald E. Grierson,et al.  Comparison among five evolutionary-based optimization algorithms , 2005, Adv. Eng. Informatics.

[3]  Kezhi Mao,et al.  Feature subset selection for support vector machines through discriminative function pruning analysis , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  J. Kittler,et al.  Feature Set Search Alborithms , 1978 .

[6]  Witold Pedrycz,et al.  Face recognition: A study in information fusion using fuzzy integral , 2005, Pattern Recognit. Lett..

[7]  Marian Stewart Bartlett,et al.  Face image analysis by unsupervised learning , 2001 .

[8]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[9]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[10]  Jack Perkins,et al.  Pattern recognition in practice , 1980 .

[11]  Huan Liu,et al.  Feature Selection for Classification , 1997, Intell. Data Anal..

[12]  T. Gunel,et al.  SAR image processing by a memetic algorithm , 2005, Proceedings of 2nd International Conference on Recent Advances in Space Technologies, 2005. RAST 2005..

[13]  Chun-Nan Hsu,et al.  The ANNIGMA-wrapper approach to fast feature selection for neural nets , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[14]  Jack Sklansky,et al.  A note on genetic algorithms for large-scale feature selection , 1989, Pattern Recognit. Lett..

[15]  Chong-Ho Choi,et al.  Input Feature Selection by Mutual Information Based on Parzen Window , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[17]  Zexuan Zhu,et al.  Wrapper–Filter Feature Selection Algorithm Using a Memetic Framework , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  Marian Stewart Bartlett,et al.  Independent component representations for face recognition , 1998, Electronic Imaging.

[19]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[20]  K. Kim,et al.  Face recognition using kernel principal component analysis , 2002, IEEE Signal Process. Lett..

[21]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[22]  Narendra Ahuja,et al.  Face recognition using kernel eigenfaces , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[23]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[24]  M. Loew,et al.  Relative feature importance: A classifier-independent approach to feature selection , 1994 .

[25]  R Kahavi,et al.  Wrapper for feature subset selection , 1997 .

[26]  Zhong Yan,et al.  Ant Colony Optimization for Feature Selection in Face Recognition , 2004, ICBA.

[27]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[28]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[29]  Byung Ro Moon,et al.  Hybrid Genetic Algorithms for Feature Selection , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[31]  Zexuan Zhu,et al.  Memetic Algorithms for Feature Selection on Microarray Data , 2007, ISNN.

[32]  Weiguo Sheng,et al.  A Memetic Fingerprint Matching Algorithm , 2007, IEEE Transactions on Information Forensics and Security.

[33]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[34]  Weiguo Sheng,et al.  A Niching Memetic Algorithm for Simultaneous Clustering and Feature Selection , 2008, IEEE Transactions on Knowledge and Data Engineering.

[35]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[36]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[37]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[39]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[41]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[42]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[43]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Michael I. Jordan,et al.  Feature selection for high-dimensional genomic microarray data , 2001, ICML.

[45]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[47]  Bernd Freisleben,et al.  A Genetic Local Search Approach to the Quadratic Assignment Problem , 1997, ICGA.