Weierstrass and Approximation Theory

We discuss and examine Weierstrass’ main contributions to approximation theory. §1. Weierstrass This is a story about Karl Wilhelm Theodor Weierstrass (Weierstras), what he contributed to approximation theory (and why), and some of the consequences thereof. We start this story by relating a little about the man and his life. Karl Wilhelm Theodor Weierstrass was born on October 31, 1815 at Ostenfelde near Munster into a liberal (in the political sense) Catholic family. He was the eldest of four children, none of whom married. Weierstrass was a very successful gymnasium student and was subsequently sent by his father to the University of Bonn to study commerce and law. His father seems to have had in mind a government post for his son. However neither commerce nor law was to his liking, and he “wasted” four years there, not graduating. Beer and fencing seem to have been fairly high on his priority list at the time. The young Weierstrass returned home, and after a period of “rest”, was sent to the Academy at Munster where he obtained a teacher’s certificate. At the Academy he fortuitously came under the tutelage and personal guidance of C. Gudermann who was professor of mathematics at Munster and whose basic mathematical love and interest was the subject of elliptic functions and power series. This interest he was successful in conveying to Weierstrass. In 1841 Weierstrass received his teacher’s certificate, and then spent the next 13 years as a teacher (for 6 years he was a teacher in a pregymnasium in the town of Deutsch-Krone (West Prussia), then for another 7 years in a gymnasium in Braunsberg (East Prussia)). During this period he continued learning mathematics, mainly by studying the work of Abel. He also published some mathematical papers. However these appeared in school journals and were quite naturally not discovered at that time by any who could understand or appreciate them. (Weierstrass’ collected works contain 7 papers from before 1854, the first of which On the development of modular functions (49 pp.) was written in 1840.) In 1854 Weierstrass published the paper On the theory of Abelian functions in Crelle’s Journal fur die Reine und Angewandte Mathematik (the first mathematical research journal, founded in 1826, and now referred to without Crelle’s name in the formal title). It created a sensation within the mathematical community. Here was a 39 year old school teacher whom no one within the mathematical community had heard of. And he had written a masterpiece, not only in its depth, but also in its mastery of an area. Recognition was

[1]  J. Korevaar,et al.  Entire functions and Müntz-Szász type approximation , 1971 .

[2]  J. Gerver THE DIFFERENTIABILITY OF THE RIEMANN FUNCTION AT CERTAIN RATIONAL MULTIPLES OF pi. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[3]  T. Takagi,et al.  A SIMPLE EXAMPLE OF THE CONTINUOUS FUNCTION WITHOUT DERIVATIVE , 1901 .

[4]  THE DIFFERENTIABILITY OF THE RIEMANN FUNCTION AT CERTAIN RATIONAL MULTIPLES OF pi. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Banach,et al.  Über die Baire'sche Kategorie gewisser Funktionenmengen , 1931 .

[6]  P. Ullrich Anmerkungen zum „Riemannschen Beispiel“ % MathType!MTEF!2!1!+-% feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXanrfitLxBI9gBaerbd9wDYLwzYbItLDharqqt% ubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq% -Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0x% fr-xfr-xb9ad , 1997 .

[7]  T. Ransford A short elementary proof of the Bishop–Stone–Weierstrass theorem , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  R. Creighton Buck Studies in modern analysis , 1962 .

[9]  Émile Borel,et al.  Leçons sur les fonctions de variables réelles et les développements en séries de polynomes , 1905 .

[10]  M. Stone The Generalized Weierstrass Approximation Theorem , 1948 .

[11]  M. Stone Applications of the theory of Boolean rings to general topology , 1937 .

[12]  M. Henri Lebesgue Sur la représentation approchée des fonctions , 1908 .

[13]  Alan L. Mackay,et al.  Publish or perish , 1974, Nature.

[14]  J. Szabados,et al.  Interpolation of Functions , 1990 .

[15]  R. Langer Interpolation and Approximation by Rational Functions in the Complex Domain , 1937 .

[16]  Wilfred Kaplan Approximation by entire functions. , 1955 .

[17]  W. Rudin Real and complex analysis , 1968 .

[18]  Brian R. Hunt,et al.  The Hausdorff dimension of graphs of Weierstrass functions , 1998 .

[19]  F. Deutsch,et al.  An elementary proof of the Stone-Weierstrass theorem , 1981 .

[20]  H. Lebesgue,et al.  Sur les intégrales singulières , 1909 .

[21]  M. Yamaguti,et al.  Mathematics of Fractals , 1997 .

[22]  D. R. Heath-Brown Edmund Landau: Collected Works , 1989 .

[23]  A. Friedman Foundations of modern analysis , 1970 .

[24]  Boo Rim Choe,et al.  An Elementary Proof of , 1987 .

[25]  C de la Valle-Poussin,et al.  Lecons sur l'approximation des fonctions d'une variable reelle , 1919 .

[26]  John Todd,et al.  Introduction to the constructive theory of functions , 1965 .

[27]  J. Cooper,et al.  Theory of Approximation , 1960, Mathematical Gazette.

[28]  L. Rogers A simple proof of Müntz's theorem , 1981, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  E. Landau Über die Approximation einer stetigen Funktion durch eine ganze rationale Funktion , 1908 .

[30]  C. Runge,et al.  Zur Theorie der Eindeutigen Analytischen Functionen , 1885 .

[31]  R. Narasimhan,et al.  Analysis on Real and Complex Manifolds , 1973 .

[32]  D. Gaier,et al.  Lectures on complex approximation , 1987 .

[33]  O. Szász Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen , 1916 .

[34]  S. Mazurkiewicz,et al.  Sur les fonctions non dérivables , 1931 .

[35]  Gian-Carlo Rota,et al.  Linear Operators and Approximation Theory. , 1965 .

[36]  P. Bois-Reymond Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen. , 1875 .

[37]  H. Kuhn Ein elementarer Beweis des Weierstraßschen Approximationssatzes , 1964 .

[38]  Pál Turán Sur Les Fonctions Bornées et Intégrables , 1970 .

[39]  A. Ostrowski Vorlesungen über Differential- und Integralrechnung , 1952 .

[40]  Leopoldo Nachbin,et al.  Elements of approximation theory , 1965 .

[41]  P. Butzer,et al.  Aspects of de La Vallée Poussin's work in approximation and its influence , 1993 .

[42]  Dunham Jackson,et al.  Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung , 1911 .

[43]  G. Hardy Weierstrass’s non-differentiable function , 1916 .

[44]  J. Gray The shaping of the riesz representation theorem: A chapter in the history of analysis , 1984 .

[45]  Sheldon Miller Dictionary of Scientific Biography , 1981 .

[46]  E. Neuenschwander Riemann’s example of a continuous, ’nondifferentiable’ function , 1978 .

[47]  Eberhard L. Stark,et al.  Bernstein — Polynome, 1912–1955 , 1981 .

[48]  Cheng-Shang Chang Calculus , 2020, Bicycle or Unicycle?.

[49]  M. Lerch Sur un point de la théorie des fonctions génératrices d’Abel , 1903 .

[50]  J. Gerver More on the Differentiability of the Riemann Function , 1971 .

[51]  Bela Sz.-Nagy Introduction to Real Functions and Orthogonal Expansions , 1965 .

[52]  I. P. Natanson Constructive function theory , 1964 .

[53]  E. Hille Analytic Function Theory , 1961 .

[54]  A. Timan Theory of Approximation of Functions of a Real Variable , 1994 .

[55]  E. Cheney Introduction to approximation theory , 1966 .

[56]  B. M. Fulk MATH , 1992 .

[57]  S. Segal Riemann’s example of a continuous “nondifferentiable” function continued , 1978 .

[58]  J. Dieudonne Foundations of Modern Analysis , 1969 .

[59]  Ch. H. Müntz Über den Approximationssatz von Weierstraß , 1914 .

[60]  M. Mahoney,et al.  History of Mathematics , 1924, Nature.

[61]  Über Weierstraßsche Approximation, besonders durch Hermitesche Interpolation , 1930 .

[62]  Bernard Bolzano Paradoxes of the infinite , 1950 .

[63]  Felix Klein Lectures on Mathematics , 2000 .

[64]  B. L. Waerden Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion , 1930 .

[65]  João B. Prolla Weierstrass-Stone,: The Theorem , 1993 .

[66]  P. Borwein,et al.  Polynomials and Polynomial Inequalities , 1995 .

[67]  J. C. Oxtoby Measure and Category , 1971 .

[68]  Paul M. Gauthier,et al.  Approximation of a Function and its Derivatives by Entire Functions of Several Variables , 1988, Canadian Mathematical Bulletin.

[69]  H. Whitney Analytic Extensions of Differentiable Functions Defined in Closed Sets , 1934 .

[70]  A. Dakin,et al.  Lecons sur l'approximation des Fonctions d'une Variable Reelle , 1920, The Mathematical Gazette.

[71]  K. Weierstrass,et al.  Über Continuirliche Functionen Eines Reellen Arguments, die für Keinen Werth des Letzteren Einen Bestimmten Differentialquotienten Besitzen , 1988 .

[72]  É. Picard,et al.  Correspondance d'Hermite et de Stieltjes , 2022 .

[73]  Charles Coulston Gillispie,et al.  Dictionary of scientific biography , 1970 .

[74]  Kenneth M. Levasseur A Probabilistic Proof of the Weierstrass Approximation Theorem , 1984 .

[75]  Judith V. Grabiner,et al.  The origins of Cauchy's rigorous calculus , 1981 .

[76]  E. T. Bell,et al.  Men of Mathematics , 1937, Nature.

[77]  H. Bohman,et al.  On approximation of continuous and of analytic functions , 1952 .

[78]  Radakovič The theory of approximation , 1932 .

[79]  B. Szőkefalvi-Nagy Introduction to real functions and orthogonal expansions , 1965 .

[80]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[81]  Paul L. Butzer,et al.  Functional Analysis and Approximation , 1981 .