Constraint Optimal Selection Techniques (COSTs) for nonnegative linear programming problems

We describe an active-set, cutting-plane approach called Constraint Optimal Selection Techniques (COSTs) and develop an efficient new COST for solving nonnegative linear programming problems. We give a geometric interpretation of the new selection rule and provide computational comparisons of the new COST with existing linear programming algorithms for some large-scale sample problems.

[1]  Pingqi Pan,et al.  Practical finite pivoting rules for the simplex method , 1990 .

[2]  Jay M. Rosenberger,et al.  Constraint Optimal Selection Techniques (COSTs) for Linear Programming , 2013 .

[3]  Marcos Pereira Estellita Lins,et al.  An improved intial basis for the simplex algorithm , 2005 .

[4]  Pingqi Pan A simplex-like method with bisection for linear programming 1 , 1991 .

[5]  Krung Sinapiromsaran,et al.  Artificial-free simplex algorithm based on the non-acute constraint relaxation , 2014, Appl. Math. Comput..

[6]  Robert E. Bixby,et al.  Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..

[7]  Arch W. Naylor,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[8]  Richard M. Karp,et al.  A Family of Simplex Variants Solving an m × d Linear Program in Expected Number of Pivot Steps Depending on d Only , 1986, Math. Oper. Res..

[9]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[10]  Robert E. Bixby,et al.  Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and Simplex Methods , 1992, Oper. Res..

[11]  Dianne P. O'Leary,et al.  A constraint-reduced variant of Mehrotra’s predictor-corrector algorithm , 2012, Comput. Optim. Appl..

[12]  Michael J. Todd,et al.  The many facets of linear programming , 2002, Math. Program..

[13]  John E. Mitchell,et al.  Computational Experience with an Interior Point Cutting Plane Algorithm , 1999, SIAM J. Optim..

[14]  Peter Dare,et al.  GPS network design: logistics solution using optimal and near-optimal methods , 2000 .

[15]  Stanley Zionts,et al.  Techniques for Removing Nonbinding Constraints and Extraneous Variables from Linear Programming Problems , 1966 .

[16]  Jay M. Rosenberger,et al.  The cosine simplex algorithm , 2006 .

[17]  George L. Nemhauser,et al.  Rerouting Aircraft for Airline Recovery , 2003, Transp. Sci..

[18]  Jay M. Rosenberger,et al.  A Branch-and-Price-and-Cut Method for Ship Scheduling with Limited Risk , 2008, Transp. Sci..

[19]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[20]  Norman D. Curet,et al.  A primal-dual simplex method for linear programs , 1993, Oper. Res. Lett..

[21]  Predrag S. Stanimirovic,et al.  Two Direct Methods in Linear Programming , 2001, Eur. J. Oper. Res..

[22]  Marcos Pereira Estellita Lins,et al.  An improved initial basis for the Simplex algorithm , 2005, Comput. Oper. Res..

[23]  MILAN ZELENY,et al.  An external reconstruction approach (ERA) to linear programming , 1986, Comput. Oper. Res..

[24]  Han-Lin Li,et al.  A linear programming approach for identifying a consensus sequence on DNA sequences , 2005, Bioinform..

[25]  J. J. Stone,et al.  THE CROSS-SECTION METHOD, AN ALGORITHM FOR LINEAR PROGRAMMING , 1958 .

[26]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[27]  D. Myers,et al.  A constraint selection technique for a class of linear programs , 1988 .