Multi‐Dimensional Characterization of Battery Materials

[1]  P. Mukherjee,et al.  Mesoscale Interrogation Reveals Mechanistic Origins of Lithium Filaments along Grain Boundaries in Inorganic Solid Electrolytes , 2021, Advanced Energy Materials.

[2]  Chao Li,et al.  Mapping the Distribution and the Microstructural Dimensions of Metallic Lithium Deposits in an Anode-Free Battery by In Situ EPR Imaging , 2021, Chemistry of Materials.

[3]  Yilan Jiang,et al.  Directional LiFePO4 cathode structure by freeze tape casting to improve lithium ion diffusion kinetics , 2021 .

[4]  Matthias Joachim Ehrhardt,et al.  (An overview of) Synergistic reconstruction for multimodality/multichannel imaging methods , 2021, Philosophical Transactions of the Royal Society A.

[5]  M. Bazant,et al.  Guiding the Design of Heterogeneous Electrode Microstructures for Li‐Ion Batteries: Microscopic Imaging, Predictive Modeling, and Machine Learning , 2021, Advanced Energy Materials.

[6]  Thomas M. M. Heenan,et al.  Tracking lithium penetration in solid electrolytes in 3D by in-situ synchrotron X-ray computed tomography , 2021, Nano Energy.

[7]  Mingxue Tang,et al.  Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging , 2021, Nature Communications.

[8]  William R B Lionheart,et al.  Crystalline phase discriminating neutron tomography using advanced reconstruction methods , 2021, Journal of Physics D: Applied Physics.

[9]  Pralav P. Shetty,et al.  Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography , 2020, Nature Materials.

[10]  Charles A. Bouman,et al.  X-Ray Computed Tomography , 2012 .

[11]  I. Robinson,et al.  Operando Bragg Coherent Diffraction Imaging of LiNi0.8Mn0.1Co0.1O2 Primary Particles within Commercially Printed NMC811 Electrode Sheets. , 2020, ACS nano.

[12]  D. Brett,et al.  4D Bragg Edge Tomography of Directional Ice Templated Graphite Electrodes , 2020, J. Imaging.

[13]  James B. Robinson,et al.  Identifying the Origins of Microstructural Defects Such as Cracking within Ni‐Rich NMC811 Cathode Particles for Lithium‐Ion Batteries , 2020, Advanced Energy Materials.

[14]  Thomas M. M. Heenan,et al.  An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes , 2020 .

[15]  C. Zhi,et al.  Dendrites in Zn‐Based Batteries , 2020, Advanced materials.

[16]  J. Robinson,et al.  Editors’ Choice—4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part II. Multi-Modal Microscopy of LiSOCl2 Cells , 2020, Journal of The Electrochemical Society.

[17]  James B. Robinson,et al.  Editors’ Choice—4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 during Discharge , 2020, Journal of The Electrochemical Society.

[18]  Thomas M. M. Heenan,et al.  Correlative acoustic time-of-flight spectroscopy and X-ray imaging to investigate gas-induced delamination in lithium-ion pouch cells during thermal runaway , 2020, Journal of Power Sources.

[19]  Chaodi Xu,et al.  Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries , 2020, Nature Materials.

[20]  M. Di Michiel,et al.  Operando investigation of the lithium/sulfur battery system by coupled X-ray absorption tomography and X-ray diffraction computed tomography , 2020, Journal of Power Sources.

[21]  Yong Yang,et al.  Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy , 2020, Nature Nanotechnology.

[22]  Thomas M. M. Heenan,et al.  Probing Heterogeneity in Li-Ion Batteries with Coupled Multiscale Models of Electrochemistry and Thermal Transport using Tomographic Domains , 2020, Journal of The Electrochemical Society.

[23]  Guoying Chen,et al.  Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries , 2020, Nature Communications.

[24]  Jingwei Xiang,et al.  In situ visualization by X-Ray computed tomography on sulfur stabilization and lithium polysulfides immobilization in S@HCS/MnO cathode , 2020, Energy Storage Materials.

[25]  S. Sharifi‐Asl,et al.  Mechanistic understanding of Li dendrites growth by in- situ/operando imaging techniques , 2020 .

[26]  R. Hu,et al.  Unveiling the Advances of Nanostructure Design for Alloy‐Type Potassium‐Ion Battery Anodes via In Situ TEM , 2020, Angewandte Chemie.

[27]  Yi Cui,et al.  Electrode roughness dependent electrodeposition of sodium at the nanoscale , 2020, Nano Energy.

[28]  J. Janek,et al.  Visualization of Light Elements using 4D STEM: The Layered‐to‐Rock Salt Phase Transition in LiNiO2 Cathode Material , 2020, Advanced Energy Materials.

[29]  Xiqian Yu,et al.  Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes , 2020, Nature Communications.

[30]  C. Grey,et al.  Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal , 2020, Nature Communications.

[31]  Thomas M. M. Heenan,et al.  Resolving Li‐Ion Battery Electrode Particles Using Rapid Lab‐Based X‐Ray Nano‐Computed Tomography for High‐Throughput Quantification , 2020, Advanced science.

[32]  L. Mancini,et al.  Morphological Evolution of Zn-Sponge Electrodes Monitored by In Situ X-ray Computed Microtomography , 2020 .

[33]  Claire L. Doswell,et al.  Operando visualisation of battery chemistry in a sodium-ion battery by 23Na magnetic resonance imaging , 2020, Nature Communications.

[34]  Thomas M. M. Heenan,et al.  3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling , 2020, Nature Communications.

[35]  Thomas M. M. Heenan,et al.  Rapid Preparation of Geometrically Optimal Battery Electrode Samples for Nano Scale X-ray Characterisation , 2020 .

[36]  P. Withers,et al.  Serial sectioning in the SEM for three dimensional materials science , 2020, Current Opinion in Solid State and Materials Science.

[37]  A. Demortière,et al.  X-ray Nanocomputed Tomography in Zernike Phase Contrast for Studying 3D Morphology of Li–O2 Battery Electrode , 2020 .

[38]  M. Zachman,et al.  Nanoscale Elemental Mapping of Intact Solid–Liquid Interfaces and Reactive Materials in Energy Devices Enabled by Cryo-FIB/SEM , 2020 .

[39]  Thomas M. M. Heenan,et al.  Probing the Structure-Performance Relationship of Lithium-Ion Battery Cathodes Using Pore-Networks Extracted from Three-Phase Tomograms , 2020 .

[40]  D. Finegan,et al.  4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique , 2020, Nature Communications.

[41]  Thomas M. M. Heenan,et al.  Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes , 2020, Nature Communications.

[42]  P. Yan,et al.  Charge distribution guided by grain crystallographic orientations in polycrystalline battery materials , 2020, Nature Communications.

[43]  Yongfu Tang,et al.  Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up , 2020, Nature Nanotechnology.

[44]  Stephan Antholzer,et al.  NETT: solving inverse problems with deep neural networks , 2018, Inverse Problems.

[45]  K. Zaghib,et al.  In situ observation of solid electrolyte interphase evolution in a lithium metal battery , 2019, Communications Chemistry.

[46]  Ji‐Guang Zhang,et al.  Origin of lithium whisker formation and growth under stress , 2019, Nature Nanotechnology.

[47]  H. Xin,et al.  In Situ Visualization of Interfacial Sodium Transport and Electrochemistry between Few‐Layer Phosphorene , 2019, Small Methods.

[48]  H. Bilheux,et al.  Dynamic Lithium Distribution upon Dendrite Growth and Shorting Revealed by Operando Neutron Imaging , 2019, ACS Energy Letters.

[49]  Joachim Mayer,et al.  Nanoscale X-ray imaging of ageing in automotive lithium ion battery cells , 2019, Journal of Power Sources.

[50]  B. L. Mehdi,et al.  Controlling the spatio-temporal dose distribution during STEM imaging by subsampled acquisition: In-situ observations of kinetic processes in liquids , 2019, Applied Physics Letters.

[51]  T L Burnett,et al.  Completing the picture through correlative characterization , 2019, Nature Materials.

[52]  Thomas M. M. Heenan,et al.  Spatially Resolving Lithiation in Silicon-Graphite Composite Electrodes via in Situ High-Energy X-ray Diffraction Computed Tomography. , 2019, Nano letters.

[53]  Florian J. Günter,et al.  Rapid electrolyte wetting of lithium-ion batteries containing laser structured electrodes: in situ visualization by neutron radiography , 2019, The International Journal of Advanced Manufacturing Technology.

[54]  Nigel P. Brandon,et al.  Operando Visualization and Multi-scale Tomography Studies of Dendrite Formation and Dissolution in Zinc Batteries , 2019, Joule.

[55]  Kang Xu,et al.  Cryogenic Focused Ion Beam Characterization of Lithium Metal Anodes , 2019, ACS Energy Letters.

[56]  M. Guizar‐Sicairos,et al.  Correlated X-Ray 3D Ptychography and Diffraction Microscopy Visualize Links between Morphology and Crystal Structure of Lithium-Rich Cathode Materials , 2018, iScience.

[57]  Wojciech Samek,et al.  Learning the invisible: a hybrid deep learning-shearlet framework for limited angle computed tomography , 2018, Inverse Problems.

[58]  Chun Huang,et al.  Spray printing and optimization of anodes and cathodes for high performance Li-Ion batteries , 2018, Electrochimica Acta.

[59]  K. Zaghib,et al.  In Situ Scanning Electron Microscopy Detection of Carbide Nature of Dendrites in Li-Polymer Batteries. , 2018, Nano letters.

[60]  Andrew M. Colclasure,et al.  Resolving the discrepancy in tortuosity factor estimation for Li-Ion battery electrodes through micro-macro modeling and experiment , 2018 .

[61]  R. Eichel,et al.  EPR Imaging of Metallic Lithium and its Application to Dendrite Localisation in Battery Separators , 2018, Scientific Reports.

[62]  Ryan R. Dehoff,et al.  Defects and 3D structural inhomogeneity in electron beam additively manufactured Inconel 718 , 2018, Materials Characterization.

[63]  Kazuo Yamamoto,et al.  Quantitative Operando Visualization of Electrochemical Reactions and Li Ions in All-Solid-State Batteries by STEM-EELS with Hyperspectral Image Analyses. , 2018, Nano letters (Print).

[64]  S. Choudhury,et al.  Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries , 2018, Nature.

[65]  D. Brett,et al.  Visualizing the Carbon Binder Phase of Battery Electrodes in Three Dimensions , 2018, ACS Applied Energy Materials.

[66]  T. Yokoshima,et al.  Direct observation of internal state of thermal runaway in lithium ion battery during nail-penetration test , 2018, Journal of Power Sources.

[67]  A. Jerschow,et al.  Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging , 2018, Nature Communications.

[68]  Zhiqiang Niu,et al.  Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers , 2018, Nature Communications.

[69]  Michael S Smirnov,et al.  An open-source tool for analysis and automatic identification of dendritic spines using machine learning , 2018, bioRxiv.

[70]  Bernadette N. Hahn,et al.  Dynamic inverse problems: modelling—regularization—numerics , 2018 .

[71]  H. Bilheux,et al.  Imaging of the Li spatial distribution within V2O5 cathode in a coin cell by neutron computed tomography , 2018 .

[72]  Thomas M. M. Heenan,et al.  Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes , 2018 .

[73]  B. L. Mehdi,et al.  A sub-sampled approach to extremely low-dose STEM , 2018 .

[74]  R. Eichel,et al.  Monitoring local redox processes in LiNi0.5Mn1.5O4 battery cathode material by in operando EPR spectroscopy. , 2018, The Journal of chemical physics.

[75]  M. Sprung,et al.  Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging , 2017, Nature Energy.

[76]  Bruce R. Rosen,et al.  Image reconstruction by domain-transform manifold learning , 2017, Nature.

[77]  Jeff Dahn,et al.  Quantifying inhomogeneity of lithium ion battery electrodes and its influence on electrochemical performance , 2018 .

[78]  N. Brandon,et al.  Integrating multi-length scale high resolution 3D imaging and modelling in the characterisation and identification of mechanical failure sites in electrochemical dendrites , 2017 .

[79]  Qiaobao Zhang,et al.  In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors , 2017 .

[80]  Yi Yu,et al.  Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy , 2017, Science.

[81]  M. Britton,et al.  MRI of chemical reactions and processes. , 2017, Progress in nuclear magnetic resonance spectroscopy.

[82]  D. Finegan,et al.  Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy , 2017 .

[83]  Ji‐Guang Zhang,et al.  Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy. , 2017, Nature nanotechnology.

[84]  Fan Guo,et al.  Oxide Film Efficiently Suppresses Dendrite Growth in Aluminum-Ion Battery. , 2017, ACS applied materials & interfaces.

[85]  N. R. Backeberg,et al.  Laser‐preparation of geometrically optimised samples for X‐ray nano‐CT , 2017, Journal of microscopy.

[86]  Yan Xu,et al.  Liquid‐Phase Electrochemical Scanning Electron Microscopy for In Situ Investigation of Lithium Dendrite Growth and Dissolution , 2017, Advanced materials.

[87]  Oluwadamilola O. Taiwo,et al.  Microstructural degradation of silicon electrodes during lithiation observed via operando X-ray tomographic imaging , 2017 .

[88]  Yimin A. Wu,et al.  In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces , 2017, Scientific Reports.

[89]  Javier Carretero-González,et al.  Materials’ Methods: NMR in Battery Research , 2017 .

[90]  Masato Ohnuma,et al.  Structural Change of Carbon Anode in a Lithium-ion Battery Product Associated with Charging Process Observed by Neutron Transmission Bragg-edge Imaging☆ , 2017 .

[91]  R. Gilles,et al.  Gas Evolution and Capacity Fading in LiFe x Mn 1-x PO 4 /Graphite Cells Studied by Neutron Imaging and Neutron Induced Prompt Gamma Activation Analysis , 2017 .

[92]  Oluwadamilola O. Taiwo,et al.  Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy , 2016 .

[93]  N. Browning,et al.  Implementing an accurate and rapid sparse sampling approach for low-dose atomic resolution STEM imaging , 2016 .

[94]  Wu Xu,et al.  The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries , 2016, Scientific Reports.

[95]  Yong‐Sheng Hu,et al.  Phase Separation of Li2S/S at Nanoscale during Electrochemical Lithiation of the Solid‐State Lithium–Sulfur Battery Using In Situ TEM , 2016 .

[96]  F. Marone,et al.  Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes , 2016, Nature Communications.

[97]  C. Grey,et al.  Real-time 3D imaging of microstructure growth in battery cells using indirect MRI , 2016, Proceedings of the National Academy of Sciences.

[98]  M. Winter,et al.  Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode , 2016, Scientific Reports.

[99]  Linsen Li,et al.  High-performance battery electrodes via magnetic templating , 2016, Nature Energy.

[100]  Florian Bouville,et al.  Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries , 2016, Nature Energy.

[101]  B. Balcom,et al.  Visualization of Steady-State Ionic Concentration Profiles Formed in Electrolytes during Li-Ion Battery Operation and Determination of Mass-Transport Properties by in Situ Magnetic Resonance Imaging. , 2016, Journal of the American Chemical Society.

[102]  N. Dudney,et al.  In Situ STEM-EELS Observation of Nanoscale Interfacial Phenomena in All-Solid-State Batteries. , 2016, Nano letters.

[103]  Fredrik Larsson,et al.  Lithium-Ion Battery Aspects on Fires in Electrified Vehicles on the Basis of Experimental Abuse Tests , 2016 .

[104]  J. Janek,et al.  Gas Evolution in LiNi0.5Mn1.5O4/Graphite Cells Studied In Operando by a Combination of Differential Electrochemical Mass Spectrometry, Neutron Imaging, and Pressure Measurements. , 2016, Analytical chemistry.

[105]  M. G. Burke,et al.  Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. , 2016, Ultramicroscopy.

[106]  Philip J. Withers,et al.  Towards in-process x-ray CT for dimensional metrology , 2016 .

[107]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[108]  Yi Cui,et al.  Highly Nitridated Graphene–Li2S Cathodes with Stable Modulated Cycles , 2015 .

[109]  Alexej Jerschow,et al.  Correlating Microstructural Lithium Metal Growth with Electrolyte Salt Depletion in Lithium Batteries Using ⁷Li MRI. , 2015, Journal of the American Chemical Society.

[110]  J. Janek,et al.  Gas Evolution in Operating Lithium-Ion Batteries Studied In Situ by Neutron Imaging , 2015, Scientific Reports.

[111]  G. Goward,et al.  Accurate Characterization of Ion Transport Properties in Binary Symmetric Electrolytes Using In Situ NMR Imaging and Inverse Modeling. , 2015, The journal of physical chemistry. B.

[112]  L. Carin,et al.  Applying compressive sensing to TEM video: a substantial frame rate increase on any camera , 2015, Advanced Structural and Chemical Imaging.

[113]  C. Grey,et al.  Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ 6Li/7Li NMR and SEM , 2015 .

[114]  James B. Robinson,et al.  In-operando high-speed tomography of lithium-ion batteries during thermal runaway , 2015, Nature Communications.

[115]  M. Hofmann,et al.  Homogeneity of lithium distribution in cylinder-type Li-ion batteries , 2015, Scientific Reports.

[116]  J. Sullivan,et al.  Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy. , 2015, ACS nano.

[117]  P. Novák,et al.  Influence of Conversion Material Morphology on Electrochemistry Studied with Operando X‐Ray Tomography and Diffraction , 2015, Advanced materials.

[118]  Y. S. Meng,et al.  Topological defect dynamics in operando battery nanoparticles , 2015, Science.

[119]  B. L. Mehdi,et al.  Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. , 2015, Nano letters.

[120]  E. Salager,et al.  Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries , 2015, Nature Communications.

[121]  Yi Cui,et al.  In situ observation of divergent phase transformations in individual sulfide nanocrystals. , 2015, Nano letters.

[122]  M. Britton Magnetic resonance imaging of electrochemical cells containing bulk metal. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[123]  S. Haigh,et al.  Correlative Tomography , 2014, Scientific Reports.

[124]  Martin Ebner,et al.  Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes , 2014 .

[125]  James E. Evans,et al.  Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. , 2014, Nano letters.

[126]  L. Carin,et al.  The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images. , 2014, Microscopy.

[127]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[128]  M. Forsyth,et al.  In Situ, Real-Time Visualization of Electrochemistry Using Magnetic Resonance Imaging , 2013, The journal of physical chemistry letters.

[129]  Karl Kunisch,et al.  A Bilevel Optimization Approach for Parameter Learning in Variational Models , 2013, SIAM J. Imaging Sci..

[130]  Y. K. Chen-Wiegart,et al.  Three-dimensional morphological measurements of LiCoO2 and LiCoO2/Li(Ni1/3Mn1/3Co1/3)O2 lithium-ion battery cathodes , 2013 .

[131]  Anna G. Stefanopoulou,et al.  Expansion of Lithium Ion Pouch Cell Batteries: Observations from Neutron Imaging , 2013 .

[132]  Fredrik Hallberg,et al.  Quantifying mass transport during polarization in a Li ion battery electrolyte by in situ 7Li NMR imaging. , 2012, Journal of the American Chemical Society.

[133]  P. Shearing,et al.  3D morphological evolution of Li-ion battery negative electrode LiVO2 during oxidation using X-ray nano-tomography , 2012 .

[134]  Srikanth Allu,et al.  Anomalous Discharge Product Distribution in Lithium-Air Cathodes , 2012 .

[135]  Alexej Jerschow,et al.  7Li MRI of Li batteries reveals location of microstructural lithium. , 2012, Nature materials.

[136]  E. Sidky,et al.  Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm , 2011, Physics in medicine and biology.

[137]  Nigel P. Brandon,et al.  Multi Length Scale Microstructural Investigations of a Commercially Available Li-Ion Battery Electrode , 2012 .

[138]  Stephen J. Harris,et al.  Direct measurement of lithium transport in graphite electrodes using neutrons , 2011 .

[139]  Di Chen,et al.  In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid , 2011 .

[140]  I. M. Robertson,et al.  Towards an integrated materials characterization toolbox , 2013 .

[141]  Nigel P. Brandon,et al.  Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography , 2011 .

[142]  Anna G. Stefanopoulou,et al.  Neutron Imaging of Lithium Concentration in LFP Pouch Cell Battery , 2011 .

[143]  Michael A. Groeber,et al.  Automated serial sectioning methods for rapid collection of 3-D microstructure data , 2011 .

[144]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[145]  Nigel P. Brandon,et al.  Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery , 2010 .

[146]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[147]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[148]  Simon Zabler,et al.  In situ investigation of the discharge of alkaline Zn–MnO2 batteries with synchrotron x-ray and neutron tomographies , 2007 .

[149]  Andrew M. Minor,et al.  Focused Ion Beam Microscopy and Micromachining , 2007 .

[150]  S. Takai,et al.  Diffusion coefficient measurements of La2/3−xLi3xTiO3 using neutron radiography , 2005 .

[151]  P. Novák,et al.  In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging , 2004 .

[152]  J. Tarascon,et al.  A reversible copper extrusion–insertion electrode for rechargeable Li batteries , 2003, Nature materials.

[153]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[154]  K. Yoneda,et al.  Application of Neutron Radiography to Visualize the Motion of Lithium Ions in Lithium‐Ion Conducting Materials , 1996 .

[155]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[156]  R. H. Taylor Electron spin resonance of magnetic ions in metals an experimental review , 1975 .