Stochastic curvature flows: asymptotic derivation, level set formulation and numerical experiments

We study the effects of random fluctuations included in microscopic models for phase transitions on macroscopic interface flows. We first derive asymptotically a stochastic mean curvature evolution law from the stochastic Ginzburg–Landau model and develop a corresponding level set formulation. Secondly, we demonstrate numerically, using stochastic Ginzburg–Landau and Ising algorithms, that microscopic random perturbations resolve geometric and numerical instabilities in the corresponding deterministic flow.

[1]  G. Barles,et al.  Front propagation and phase field theory , 1993 .

[2]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[3]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[4]  J. Keller,et al.  Fast reaction, slow diffusion, and curve shortening , 1989 .

[5]  Panagiotis E. Souganidis,et al.  Stochastic Ising models and anisotropic front propagation , 1997 .

[6]  Takao Ohta,et al.  Kinetic Drumhead Model of Interface. I , 1982 .

[7]  G. Bellettini,et al.  Two examples of fattening for the curvature flow with a driving force , 1994 .

[8]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[9]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[10]  P. Souganidis,et al.  Generalized motion by mean curvature as a macroscopic limit of stochastic ising models with long range interactions and Glauber dynamics , 1995 .

[11]  L. Evans,et al.  Motion of level sets by mean curvature IV , 1995 .

[12]  T. Funaki Singular limit for stochastic reaction-diffusion equation and generation of random interfaces , 1999 .

[13]  Charles M. Elliott,et al.  CONVERGENCE OF NUMERICAL SOLUTIONS TO THE ALLEN-CAHN EQUATION , 1998 .

[14]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[15]  H. Janssen,et al.  Critical Dynamics of an Interface in 1+∊ Dimensions , 1981 .

[16]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[17]  Tom Ilmanen,et al.  Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature , 1993 .

[18]  H. Spohn Interface motion in models with stochastic dynamics , 1993 .

[19]  D. Chopp,et al.  A Computed example of nonuniqueness of mean curvature flow in R3 , 1995 .

[20]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[21]  P. Souganidis,et al.  Interacting particle systems and generalized evolution of fronts , 1994 .

[22]  S. Angenent,et al.  Degenerate neckpinches in mean curvature flow. , 1997 .

[23]  Vlachos,et al.  From microscopic interactions to macroscopic laws of cluster evolution , 2000, Physical review letters.

[24]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .