Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry

[1]  C. Göpel,et al.  Aluminum‐26 in H4 chondrites: Implications for its production and its usefulness as a fine‐scale chronometer for early solar system events , 2002 .

[2]  M. Trieloff,et al.  Comment on “40Ar/39Ar age of plagioclase from Acapulco meteorite and the problem of systematic errors in cosmochronology” by Paul R. Renne , 2001 .

[3]  P. Renne,et al.  Call for an improved set of decay constants for geochronological use , 2001 .

[4]  Petr Pravec,et al.  Fast and Slow Rotation of Asteroids , 2000 .

[5]  P. Renne 40Ar/39Ar age of plagioclase from Acapulco meteorite and the problem of systematic errors in cosmochronology , 2000 .

[6]  G. Meynet,et al.  Gamma-ray line emission from OB associations and young open clusters. II. The Cygnus region , 1999, astro-ph/0206045.

[7]  O. Pravdivtseva,et al.  VERIFICATION AND INTERPRETATION OF THE I-XE CHRONOMETER , 1999 .

[8]  M. Trieloff,et al.  The age of the Kara impact structure, Russia , 1998 .

[9]  E. Jessberger,et al.  The cooling history of the Acapulco meteorite as recorded by the 244Pu and 40Ar-39Ar chronometers , 1997 .

[10]  Claude J. Allègre,et al.  The age of the Earth , 1995 .

[11]  G. Manhès,et al.  UPb systematics of phosphates from equilibrated ordinary chondrites , 1994 .

[12]  B. Lavielle,et al.  Search for 248Cm in the early Solar System , 1992 .

[13]  S. Galer,et al.  Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis , 1992 .

[14]  W. Lanford,et al.  Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques , 1991 .

[15]  M. S. Matthews,et al.  The sun in time , 1991 .

[16]  J. Surdej,et al.  Asteroid 532 Herculina - Lightcurves, pole orientation and a model , 1987 .

[17]  G. J. Taylor,et al.  Original structures, and fragmentation and reassembly histories of asteroids - Evidence from meteorites , 1987 .

[18]  R. Grimm Penecontemporaneous metamorphism, fragmentation, and reassembly of ordinary chondrite parent bodies , 1985 .

[19]  N. Fujii,et al.  Ordinary chondrite parent body - An internal heating model , 1982 .

[20]  G. Wasserburg,et al.  The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates , 1981 .

[21]  E. Scott,et al.  Metallic minerals, thermal histories and parent bodies of some xenolithic, ordinary chondrite meteorites , 1981 .

[22]  T. Kirsten,et al.  129I/127I: a Puzzling Early Solar System Chronometer , 1980 .

[23]  P. Cadogan,et al.  The early history of chondrite parent bodies inferred from 40 Ar- 39 Ar ages. , 1978 .

[24]  J. Herndon,et al.  ALUMINUM-26 AS A PLANETOID HEAT SOURCE IN THE EARLY SOLAR SYSTEM , 1977 .

[25]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[26]  G. Wasserburg,et al.  Correction [to “Demonstration of 26Mg excess in Allende and evidence for 26Al”] , 1976 .

[27]  G. Wasserburg,et al.  Demonstration of 26 Mg excess in Allende and evidence for 26 Al , 1976 .

[28]  P. Pellas,et al.  Mesures des taux de refroidissement des chondrites ordinaires à partir des traces de fission du plutonium 244 enregistrées dans les cristaux détecteurs. , 1975 .

[29]  R. T. Dodd Metamorphism of the ordinary chondrites: A review , 1969 .

[30]  W. R. Schmus Polymict structure of the Mezö-Madaras chondrite , 1967 .

[31]  John A. Wood,et al.  A chemical-petrologic classification for the chondritic meteorites. , 1967 .

[32]  J. Wood The cooling rates and parent planets of several iron meteorites , 1964 .

[33]  J. Perry The Age of the Earth , 1895, Nature.