Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry
暂无分享,去创建一个
M. Trieloff | E. Jessberger | M. Bourot‐Denise | I. Herrwerth | J. Hopp | P. Pellas | C. Fiéni | M. Ghelis | M. Bourot-Denise
[1] C. Göpel,et al. Aluminum‐26 in H4 chondrites: Implications for its production and its usefulness as a fine‐scale chronometer for early solar system events , 2002 .
[2] M. Trieloff,et al. Comment on “40Ar/39Ar age of plagioclase from Acapulco meteorite and the problem of systematic errors in cosmochronology” by Paul R. Renne , 2001 .
[3] P. Renne,et al. Call for an improved set of decay constants for geochronological use , 2001 .
[4] Petr Pravec,et al. Fast and Slow Rotation of Asteroids , 2000 .
[5] P. Renne. 40Ar/39Ar age of plagioclase from Acapulco meteorite and the problem of systematic errors in cosmochronology , 2000 .
[6] G. Meynet,et al. Gamma-ray line emission from OB associations and young open clusters. II. The Cygnus region , 1999, astro-ph/0206045.
[7] O. Pravdivtseva,et al. VERIFICATION AND INTERPRETATION OF THE I-XE CHRONOMETER , 1999 .
[8] M. Trieloff,et al. The age of the Kara impact structure, Russia , 1998 .
[9] E. Jessberger,et al. The cooling history of the Acapulco meteorite as recorded by the 244Pu and 40Ar-39Ar chronometers , 1997 .
[10] Claude J. Allègre,et al. The age of the Earth , 1995 .
[11] G. Manhès,et al. UPb systematics of phosphates from equilibrated ordinary chondrites , 1994 .
[12] B. Lavielle,et al. Search for 248Cm in the early Solar System , 1992 .
[13] S. Galer,et al. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis , 1992 .
[14] W. Lanford,et al. Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques , 1991 .
[15] M. S. Matthews,et al. The sun in time , 1991 .
[16] J. Surdej,et al. Asteroid 532 Herculina - Lightcurves, pole orientation and a model , 1987 .
[17] G. J. Taylor,et al. Original structures, and fragmentation and reassembly histories of asteroids - Evidence from meteorites , 1987 .
[18] R. Grimm. Penecontemporaneous metamorphism, fragmentation, and reassembly of ordinary chondrite parent bodies , 1985 .
[19] N. Fujii,et al. Ordinary chondrite parent body - An internal heating model , 1982 .
[20] G. Wasserburg,et al. The isotopic composition of uranium and lead in Allende inclusions and meteoritic phosphates , 1981 .
[21] E. Scott,et al. Metallic minerals, thermal histories and parent bodies of some xenolithic, ordinary chondrite meteorites , 1981 .
[22] T. Kirsten,et al. 129I/127I: a Puzzling Early Solar System Chronometer , 1980 .
[23] P. Cadogan,et al. The early history of chondrite parent bodies inferred from 40 Ar- 39 Ar ages. , 1978 .
[24] J. Herndon,et al. ALUMINUM-26 AS A PLANETOID HEAT SOURCE IN THE EARLY SOLAR SYSTEM , 1977 .
[25] R. Steiger,et al. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .
[26] G. Wasserburg,et al. Correction [to “Demonstration of 26Mg excess in Allende and evidence for 26Al”] , 1976 .
[27] G. Wasserburg,et al. Demonstration of 26 Mg excess in Allende and evidence for 26 Al , 1976 .
[28] P. Pellas,et al. Mesures des taux de refroidissement des chondrites ordinaires à partir des traces de fission du plutonium 244 enregistrées dans les cristaux détecteurs. , 1975 .
[29] R. T. Dodd. Metamorphism of the ordinary chondrites: A review , 1969 .
[30] W. R. Schmus. Polymict structure of the Mezö-Madaras chondrite , 1967 .
[31] John A. Wood,et al. A chemical-petrologic classification for the chondritic meteorites. , 1967 .
[32] J. Wood. The cooling rates and parent planets of several iron meteorites , 1964 .
[33] J. Perry. The Age of the Earth , 1895, Nature.