Cryo-EM Structure of the β3 Adrenergic Receptor Reveals the Molecular Basis of Subtype Selectivity

β3 AR is the last piece of β adrenergic receptor and predominantly expressed in adipose tissue and urinary bladder, and thus has emerged as attractive drug targets for treatments of type2 diabetes, obesity, and overactive bladder (OAB). Here we report a 3.2 A cryo-electron microscopy structure of the β3 AR-Gs complex bound to the selective agonist mirabegron, a first-in-class drug for OAB. Comparison of this structure with the previously reported β1 AR and β2 AR structures revealed a unique activation mechanism upon mirabegron binding to the orthosteric site. Moreover, the narrower exosite in β3 AR forms a perpendicular pocket for mirabegron. Mutational analyses demonstrated that the structural differences in the exosite, rather than amino-acid divergence, define the drug selectivity among the β adrenergic receptor subtypes. Our findings provide a molecular basis for β-AR subtype selectivity, allowing design of more selective agents with fewer adverse effects.

[1]  O. Nureki,et al.  Structure of the human secretin receptor coupled to an engineered heterotrimeric G protein. , 2020, Biochemical and biophysical research communications.

[2]  M. Chance,et al.  Time-resolved Conformational Analysis during GPCR-Gs Coupling , 2020, Proceedings for Annual Meeting of The Japanese Pharmacological Society.

[3]  O. Nureki,et al.  Cryo-EM structure of the human PAC1 receptor coupled to an engineered heterotrimeric G protein , 2019, bioRxiv.

[4]  R. Russell,et al.  Illuminating G-Protein-Coupling Selectivity of GPCRs , 2019, Cell.

[5]  M. Chance,et al.  Assembly of a GPCR-G Protein Complex , 2019, Cell.

[6]  Ron O. Dror,et al.  Structure of a Signaling Cannabinoid Receptor 1-G Protein Complex , 2019, Cell.

[7]  Andrew S Doré,et al.  Molecular basis for high-affinity agonist binding in GPCRs , 2018, Science.

[8]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[9]  R. Dror,et al.  Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist , 2018, Nature Chemical Biology.

[10]  Christopher G Tate,et al.  Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein , 2018, bioRxiv.

[11]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[12]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[13]  T. S. Kobilka,et al.  Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling , 2015, Cell.

[14]  G. Choby,et al.  Pharmacotherapy for the treatment of asthma: current treatment options and future directions , 2015, International forum of allergy & rhinology.

[15]  Kathryn E. Livingston,et al.  Crystal structure of active mu-opioid receptor bound to the agonist BU72 , 2015 .

[16]  Alexis Rohou,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[17]  T. S. Kobilka,et al.  Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling , 2015, Cell.

[18]  K. Garcia,et al.  Adrenaline-activated structure of the β2-adrenoceptor stabilized by an engineered nanobody , 2013, Nature.

[19]  M. Babu,et al.  Molecular signatures of G-protein-coupled receptors , 2013, Nature.

[20]  Albert C. Pan,et al.  The Dynamic Process of β2-Adrenergic Receptor Activation , 2013, Cell.

[21]  Albert C. Pan,et al.  Activation mechanism of the β2-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[22]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[23]  A. Leslie,et al.  Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation , 2011, Nature.

[24]  R. Stevens,et al.  Structure of an Agonist-Bound Human A2A Adenosine Receptor , 2011, Science.

[25]  Christopher G. Tate,et al.  The structural basis for agonist and partial agonist action on a β1-adrenergic receptor , 2010, Nature.

[26]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[27]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[28]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[29]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[30]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[31]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[32]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[33]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[34]  Brian K. Kobilka,et al.  High resolution crystal structure of human B2-adrenergic G protein-coupled receptor. , 2007 .

[35]  M. Sasamata,et al.  Effect of (R)-2-(2-Aminothiazol-4-yl)-4′-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} Acetanilide (YM178), a Novel Selective β3-Adrenoceptor Agonist, on Bladder Function , 2007, Journal of Pharmacology and Experimental Therapeutics.

[36]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[37]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[38]  O. Yamaguchi β3-adrenoceptors in human detrusor muscle ☆ , 2002 .

[39]  K. Silver,et al.  Pancreatic beta-cells expressing the Arg64 variant of the beta(3)-adrenergic receptor exhibit abnormal insulin secretory activity. , 2001, Journal of molecular endocrinology.

[40]  M. Morimatsu,et al.  Mutated human beta3-adrenergic receptor (Trp64Arg) lowers the response to beta3-adrenergic agonists in transfected 3T3-L1 preadipocytes. , 2000, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[41]  A. Strosberg,et al.  The biochemical effect of the naturally occurring Trp64-->Arg mutation on human beta3-adrenoceptor activity. , 1997, European journal of biochemistry.

[42]  A. Shuldiner,et al.  The beta3-adrenergic receptor in the obesity and diabetes prone rhesus monkey is very similar to human and contains arginine at codon 64. , 1997, Gene.

[43]  K. Silver,et al.  A mutation in the beta 3-adrenergic receptor gene is associated with obesity and hyperinsulinemia in Japanese subjects. , 1995, Biochemical and biophysical research communications.

[44]  K. Clément,et al.  Genetic Variation in the β3-Adrenergic Receptor and an Increased Capacity to Gain Weight in Patients with Morbid Obesity , 1995 .

[45]  C. Bogardus,et al.  Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the beta 3-adrenergic-receptor gene. , 1995, The New England journal of medicine.

[46]  L. Groop,et al.  Association of a polymorphism in the beta 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. , 1995, The New England journal of medicine.

[47]  A. Strosberg,et al.  Molecular characterization of the human beta 3-adrenergic receptor. , 1989, Science.

[48]  The ASPET Award for Experimental Therapeutics , 1974 .

[49]  A. M. Lands,et al.  Differentiation of Receptor Systems activated by Sympathomimetic Amines , 1967, Nature.