Classification of the family AT4(qs, q, q) of antipodal tight graphs

Let @C be an antipodal distance-regular graph with diameter 4 and eigenvalues @q"0>@q"1>@q"2>@q"3>@q"4. Then its Krein parameter q"1"1^4 vanishes precisely when @C is tight in the sense of Jurisic, Koolen and Terwilliger, and furthermore, precisely when @C is locally strongly regular with nontrivial eigenvalues p:[email protected]"2 and -q:[email protected]"3. When this is the case, the intersection parameters of @C can be parameterized by p, q and the size of the antipodal classes r of @C, hence we denote @C by AT4(p,q,r). Jurisic conjectured that the AT4(p,q,r) family is finite and that, aside from the Conway-Smith graph, the Soicher2 graph and the 3.Fi"2"4^- graph, all graphs in this family have parameters belonging to one of the following four subfamilies:(i)q|p,r=q,(ii)q|p,r=2,(iii)p=q-2,r=q-1,(iv)p=q-2,r=2. In this paper we settle the first subfamily. Specifically, we show that for a graph AT4(qs,q,q) there are exactly five possibilities for the pair (s,q), with an example for each: the Johnson graph J(8,4) for (1,2), the halved 8-cube for (2,2), the 3.O"6^-(3) graph for (1,3), the Meixner2 graph for (2,4) and the 3.O"7(3) graph for (3,3). The fact that the @m-graphs of the graphs in this subfamily are completely multipartite is very crucial in this paper.

[1]  J. Thas,et al.  Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces , 2001 .

[2]  Derek H. Smith Primitive and imprimitive graphs , 1971 .

[3]  Thomas Meixner Some Polar Towers , 1991, Eur. J. Comb..

[4]  Characterization of the Patterson graph , 2008 .

[5]  Paul M. Terwilliger P- and Q-Polynomial Association Schemes and Their Antipodal P-Polynomial Covers , 1993, Eur. J. Comb..

[6]  Jacobus H. Koolen,et al.  Krein parameters and antipodal tight graphs with diameter 3 and 4 , 2002, Discret. Math..

[7]  Andries E. Brouwer,et al.  The distance-regular antipodal covers of classical distance-regular graphs , 1988 .

[8]  Jacobus H. Koolen,et al.  A Local Approach to 1-Homogeneous Graphs , 2000, Des. Codes Cryptogr..

[9]  Peter J. Cameron,et al.  Strongly Regular Graphs Having Strongly Regular Subconstituents , 1978 .

[10]  Paul M. Terwilliger The classification of distance-regular graphs of type IIB , 1988, Comb..

[11]  Aleksandar Jurišić,et al.  Distance-regular graphs with complete multipartite μ-graphs and AT4 family , 2007 .

[12]  Aleksandar Jurišić,et al.  Tight Distance-Regular Graphs , 2000 .

[13]  Jacobus H. Koolen,et al.  Nonexistence of some Antipodal Distance-regular Graphs of Diameter Four , 2000, Eur. J. Comb..

[14]  Jack H. Koolen,et al.  1-Homogeneous Graphs with Cocktail Party μ-Graphs , 2003 .

[15]  Xavier L. Hubaut,et al.  Strongly regular graphs , 1975, Discret. Math..

[16]  Leonard H. Soicher,et al.  Three New Distance-regular Graphs , 1993, Eur. J. Comb..

[17]  J. Thas,et al.  Finite Generalized Quadrangles , 2009 .

[18]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[19]  Aleksandar Jurisic AT4 Family And2-homogeneous Graphs , 2003, Discret. Math..