Towards reference dosimetry for the MR-linac: magnetic field correction of the ionization chamber reading

In the UMC Utrecht a prototype MR-linac has been installed. The system consists of a 6 MV Elekta (Crawley, UK) linear accelerator and a 1.5 T Philips (Best, The Netherlands) Achieva MRI system. This paper investigates the feasibility to correct the ionization chamber reading for the magnetic field within the dosimetry calibration method described by Almond et al (1999 Med. Phys. 26 1847-70). Firstly, the feasibility of using an ionization chamber in an MR-linac was assessed by investigating possible influences of the magnetic field on NE2571 Farmer-type ionization chamber characteristics: linearity, repeatability, orientation in the magnetic field; and AAPM TG51 correction factor for voltage polarity and ion recombination. We found that these AAPM correction factors for the NE2571 chamber were not influenced by the magnetic field. Secondly, the influence of the permanent 1.5 T magnetic field on the NE2571 chamber reading was quantified. The reading is influenced by the magnetic field; therefore, a correction factor has been added. For the standardized setup used in this paper, the NE2571 chamber reading increases by 4.9% (± 0.2%) due to the transverse 1.5 T magnetic field. Dosimetry measurements in an MR-linac are feasible, if a setup-specific magnetic field correction factor (P1.5 T) for the charge reading is introduced. For the setup investigated in this paper, the P1.5 T has a value of 0.953.

[1]  J G M Kok,et al.  Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept , 2009, Physics in medicine and biology.

[2]  B W Raaymakers,et al.  Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose increase at tissue–air interfaces in a lateral magnetic field due to returning electrons , 2005, Physics in medicine and biology.

[3]  Jan J W Lagendijk,et al.  MRI/linac integration. , 2008, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[4]  M. Weinhous,et al.  Determining Pion, the correction factor for recombination losses in an ionization chamber. , 1984, Medical physics.

[5]  A N T J Kotte,et al.  Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field. , 2004, Physics in medicine and biology.

[6]  B W Raaymakers,et al.  Integrating a MRI scanner with a 6 MV radiotherapy accelerator: impact of the surface orientation on the entrance and exit dose due to the transverse magnetic field , 2007, Physics in medicine and biology.

[7]  D. Rogers,et al.  AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. , 1999, Medical physics.

[8]  G. Jaffe On the Theory of Recombination , 1940 .

[9]  B W Raaymakers,et al.  Dosimetry for the MRI accelerator: the impact of a magnetic field on the response of a Farmer NE2571 ionization chamber , 2009, Physics in medicine and biology.

[10]  Iwan Kawrakow,et al.  Effective point of measurement of thimble ion chambers in megavoltage photon beams. , 2009, Medical physics.

[11]  J. Boag The saturation curve for ionization measurements in pulsed radiation beams. , 1952, The British journal of radiology.

[12]  S C Lillicrap,et al.  Code of Practice for high-energy photon therapy dosimetry based on the NPL absorbed dose calibration service , 1990 .