Estimation of the Gibbs energy of transfer of zinc(II) in mixtures of water and acetone by means of different reference redox systems
暂无分享,去创建一个
[1] J. Randles. Adsorption at fluid interfaces II. Surface tension at the interface between a binary liquid mixture and an ideal polarized mercury electrode , 1975 .
[2] M. Alfenaar. Inadequacy of the ferrocene-ferricinium assumption for estimating the chemical free enthalpy (Gibbs free energy) of transfer of single ions , 1975 .
[3] Z. Borkowska. Adsorption of acetone on the mercury electrode from H2O+(CH3)2CO+HCl solutions , 1975 .
[4] J. Stroka,et al. Kinetics of Zn2+ reduction at a Hg electrode from water-acetone and water-methanol mixtures , 1975 .
[5] N. Matsuura,et al. Medium Effects for Single Ions in Dimethyl Sulfoxide, N , N ′-Dimethylformamide, and Propylene Carbonate , 1974 .
[6] R. Parsons,et al. The medium effect for single ionic species , 1974 .
[7] J. Lipkowski,et al. Electrode kinetics in mixed solvents Investigations of the kinetics and equilibrium properties of manganese (II)—ammonia complexes in water and mixed solvents of n-propanol, isopropanol, t-butanol and water , 1973 .
[8] J. Diggle,et al. Solvation of ions—XX. The ferrocene—ferricinium couple and its role in the estimation of free energies of transfer of single ions , 1973 .
[9] H. Yeager,et al. Spectroscopic studies of ionic association in propylene carbonate , 1973 .
[10] V. Gutmann,et al. Der Lösungsmitteleinfluß auf die polarographische Reduktion der Alkalimetallionen und des Bariumions , 1973 .
[11] J. Sharp,et al. Solvation of ions. XVI. Solvent activity coefficients of single ions. Recommended extrathermodynamic assumption , 1972 .
[12] I. Kolthoff. A review of electrochemistry in non-aqueous solvents , 1971 .
[13] A. I. Popov,et al. Spectroscopic studies of ionic solvation. VIII. Alkali metal salts in acetone solutions , 1971 .
[14] J. Stroka,et al. The adsorption of SCN - ions on mercury electrode from H 2 O-acetone solutions , 1971 .
[15] E. Gonzalez,et al. A study of the rate of simple electrode reactions as a function of the solvent , 1971 .
[16] V. Gutmann,et al. Das polarographische Verhalten von Europium in Abhängigkeit vom Lösungsmittel und Leitsalz , 1969 .
[17] V. Gutmann,et al. Oszillopolarographische untersuchungen an lanthanoiden in dimethylsulfoxid und dimethylformamid , 1968 .
[18] S. L. Levine,et al. A voltammetric study of aquozinc(II) complexes in methanol , 1968 .
[19] E. Fischerová,et al. Elektrokapillarkurven für die Grenzfläche von Quecksilber und zehntelnormalem Lithiumchlorid in Aceton-Wassergemischen , 1968 .
[20] J. Coetzee,et al. Solute-solvent interactions. I. Evaluations of relative activities of reference cations in acetonitrile and water , 1967 .
[21] W. Jaenicke,et al. Austauschströme der Zn2+/Zn(Hg)-Elektrode in binären Mischungen von Wasser und organischen Lösungsmitteln , 1967 .
[22] H. Schröer,et al. Weitere bemerkungen über das polarographische verhalten von aromatenkomplexen des chroms. Methylsubstituierte aromatenkomplexe , 1966 .
[23] I. Kolthoff,et al. Electrode Potentials in Acetonitrile. Estimation of the Liquid Junction Potential between Acetonitrile Solutions and the Aqueous Saturated Calomel Electrode1 , 1965 .
[24] H. Schröer,et al. Weitere Bemerkungen über das polarographische Verhalten von Aromatenkomplexen des Chroms. Halogensubstituierte Aromatenkomplexe , 1964 .
[25] R. T. Iwamoto,et al. Experimental Evaluation of Liquid-Junction Potential , 1961 .
[26] G. Wilkinson. The Preparation and Some Properties of the Cobalticinium Salts , 1952 .
[27] Kenneth S. Pitzer,et al. The Free Energy of Hydration of Gaseous Ions, and the Absolute Potential of the Normal Calomel Electrode , 1939 .