Influence of sintering temperature on the electrochemical properties of P2-type Na0.67Mn0.7Ni0.2Mg0.1O2 cathodes for sodium-ion batteries

[1]  Xing Ou,et al.  Engineered single-crystal metal-selenide for rapid K-ion diffusion and polyselenide convention , 2022 .

[2]  Wengao Zhao,et al.  In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes , 2021, Nature Communications.

[3]  Lei Cheng,et al.  Highly ordered structure in single-crystalline LiNi0.65Co0.15Mn0.20O2 with promising Li-ion storage property by precursor pre-oxidation , 2021 .

[4]  Yong‐Sheng Hu,et al.  Pentanary transition-metals Na-ion layered oxide cathode with highly reversible O3-P3 phase transition , 2021 .

[5]  Shaohua Guo,et al.  Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries , 2020 .

[6]  H. Duan,et al.  The stability of P2-layered sodium transition metal oxides in ambient atmospheres , 2020, Nature Communications.

[7]  Seung‐Taek Myung,et al.  Mn‐Rich P′2‐Na0.67[Ni0.1Fe0.1Mn0.8]O2 as High‐Energy‐Density and Long‐Life Cathode Material for Sodium‐Ion Batteries , 2020, Advanced Energy Materials.

[8]  Wengao Zhao,et al.  Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries , 2020 .

[9]  Chenglong Zhao,et al.  Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes , 2020, Journal of the American Chemical Society.

[10]  Kunfeng Chen,et al.  Active La–Nb–O compounds for fast lithium-ion energy storage , 2019, Tungsten.

[11]  Yongyao Xia,et al.  O3-Type Layered Ni-Rich Oxide: A High-Capacity and Superior-Rate Cathode for Sodium-Ion Batteries. , 2019, Small.

[12]  Yongchang Liu,et al.  Hierarchical Engineering of Porous P2‐Na2/3Ni1/3Mn2/3O2 Nanofibers Assembled by Nanoparticles Enables Superior Sodium‐Ion Storage Cathodes , 2019, Advanced Functional Materials.

[13]  Xianyou Wang,et al.  Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates , 2019, Chemical Engineering Journal.

[14]  Chenglong Zhao,et al.  Ni-based cathode materials for Na-ion batteries , 2019, Nano Research.

[15]  G. F. Ortiz,et al.  On the use of guanidine hydrochloride soft template in the synthesis of Na2/3Ni1/3Mn2/3O2 cathodes for sodium-ion batteries , 2019, Journal of Alloys and Compounds.

[16]  Zhen-guo Wu,et al.  Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high performance Na0.6Mn0.95Ni0.05O2-F cathode , 2019, Electrochimica Acta.

[17]  Ling Huang,et al.  Probing into the working mechanism of Mg versus Co in enhancing the electrochemical performance of P2-Type layered composite for sodium-ion batteries , 2019, Nano Energy.

[18]  Baohua Li,et al.  Comprehensive Review of P2-Type Na2/3Ni1/3Mn2/3O2, a Potential Cathode for Practical Application of Na-Ion Batteries. , 2019, ACS applied materials & interfaces.

[19]  Ling Huang,et al.  Improvement of electrochemical properties of P2-type Na2/3Mn2/3Ni1/3O2 sodium ion battery cathode material by water-soluble binders , 2019, Electrochimica Acta.

[20]  Yufeng Zhao,et al.  Modulating the Interlayer Spacing and Na+/Vacancy Disordering of P2-Na0.67MnO2 for Fast Diffusion and High-Rate Sodium Storage. , 2019, ACS applied materials & interfaces.

[21]  Minmin Chen,et al.  Na+-Conductive Na2Ti3O7-Modified P2-type Na2/3Ni1/3Mn2/3O2 via a Smart in Situ Coating Approach: Suppressing Na+/Vacancy Ordering and P2-O2 Phase Transition. , 2018, ACS applied materials & interfaces.

[22]  Yu-Guo Guo,et al.  Layered Oxide Cathodes for Sodium‐Ion Batteries: Phase Transition, Air Stability, and Performance , 2018 .

[23]  Quan-hong Yang,et al.  Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage , 2018, Nature Communications.

[24]  Jun Lu,et al.  On the P2-NaxCo1-y(Mn2/3Ni1/3)yO2 Cathode Materials for Sodium-Ion Batteries: Synthesis, Electrochemical Performance, and Redox Processes Occurring during the Electrochemical Cycling. , 2018, ACS applied materials & interfaces.

[25]  Chenghao Yang,et al.  Unravelling the electrochemical properties and thermal behavior of NaNi2/3Sb1/3O2 cathode for sodium-ion batteries by in situ X-ray diffraction investigation , 2017 .

[26]  P. Bruce,et al.  High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2 (x = 0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability , 2016 .

[27]  Ya‐Xia Yin,et al.  Suppressing the P2-O2 Phase Transition of Na0.67 Mn0.67 Ni0.33 O2 by Magnesium Substitution for Improved Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[28]  D. K. Kim,et al.  Influence of carbon polymorphism towards improved sodium storage properties of Na3V2O2x(PO4)2F3-2x , 2016, Journal of Solid State Electrochemistry.

[29]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[30]  A. Sleight,et al.  Solid Solution Studies of Layered Honeycomb-Ordered Phases O3-Na3M2SbO6 (M = Cu, Mg, Ni, Zn) , 2013 .