Large-scale log-determinant computation through stochastic Chebyshev expansions
暂无分享,去创建一个
[1] T. J. Rivlin. The Chebyshev polynomials , 1974 .
[2] M. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines , 1989 .
[3] Ilse C. F. Ipsen. Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..
[4] Ronald P. Barry,et al. Monte Carlo estimates of the log determinant of large sparse matrices , 1999 .
[5] Michael I. Jordan,et al. Learning with Mixtures of Trees , 2001, J. Mach. Learn. Res..
[6] James P. LeSage,et al. Chebyshev approximation of log-determinants of spatial weight matrices , 2004, Comput. Stat. Data Anal..
[7] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[8] Donald L. Kreher,et al. Graphs, algorithms and optimization , 2004 .
[9] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[10] T. Tao,et al. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.
[11] Leonhard Held,et al. Gaussian Markov Random Fields: Theory and Applications , 2005 .
[12] Dmitry M. Malioutov,et al. Low-Rank Variance Estimation in Large-Scale Gmrf Models , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[13] Martin J. Wainwright,et al. Log-determinant relaxation for approximate inference in discrete Markov random fields , 2006, IEEE Transactions on Signal Processing.
[14] Inderjit S. Dhillon,et al. Information-theoretic metric learning , 2006, ICML '07.
[15] Y. Saad,et al. An estimator for the diagonal of a matrix , 2007 .
[16] Y. Zhang,et al. Approximate implementation of the logarithm of the matrix determinant in Gaussian process regression , 2007 .
[17] Nenad Moraca,et al. Bounds for norms of the matrix inverse and the smallest singular value , 2008 .
[18] Nicol N. Schraudolph,et al. Efficient Exact Inference in Planar Ising Models , 2008, NIPS.
[19] T. Tao,et al. Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.
[20] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[21] P. Rousseeuw,et al. Minimum volume ellipsoid , 2009 .
[22] H. Avron. Counting Triangles in Large Graphs using Randomized Matrix Trace Estimation , 2010 .
[23] Xiaojun Chen,et al. Error bounds for approximation in Chebyshev points , 2010, Numerische Mathematik.
[24] Sivan Toledo,et al. Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix , 2011, JACM.
[25] J. D. Villiers. Mathematics of Approximation , 2012 .
[26] Felix J. Herrmann,et al. Robust inversion, dimensionality reduction, and randomized sampling , 2012, Math. Program..
[27] Anima Anandkumar,et al. Learning Mixtures of Tree Graphical Models , 2012, NIPS.
[28] Pradeep Ravikumar,et al. BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables , 2013, NIPS.
[29] M. Anitescu,et al. STOCHASTIC APPROXIMATION OF SCORE FUNCTIONS FOR GAUSSIAN PROCESSES , 2013, 1312.2687.
[30] Jo Eidsvik,et al. Parameter estimation in high dimensional Gaussian distributions , 2011, Stat. Comput..
[31] Jinwoo Shin,et al. Large-scale Log-determinant Computation through Stochastic , 2015 .
[32] S. Dorn,et al. Stochastic determination of matrix determinants. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[33] Uri M. Ascher,et al. Improved Bounds on Sample Size for Implicit Matrix Trace Estimators , 2013, Found. Comput. Math..
[34] Christos Boutsidis,et al. A Randomized Algorithm for Approximating the Log Determinant of a Symmetric Positive Definite Matrix , 2015, ArXiv.
[35] Edoardo Di Napoli,et al. Efficient estimation of eigenvalue counts in an interval , 2013, Numer. Linear Algebra Appl..
[36] Michael Chertkov,et al. Learning Planar Ising Models , 2010, J. Mach. Learn. Res..