Melanopsin and Mechanisms of Non-visual Ocular Photoreception*

In addition to rods and cones, the mammalian eye contains a third class of photoreceptor, the intrinsically photosensitive retinal ganglion cell (ipRGC). ipRGCs are heterogeneous irradiance-encoding neurons that primarily project to non-visual areas of the brain. Characteristics of ipRGC light responses differ significantly from those of rod and cone responses, including depolarization to light, slow on- and off-latencies, and relatively low light sensitivity. All ipRGCs use melanopsin (Opn4) as their photopigment. Melanopsin resembles invertebrate rhabdomeric photopigments more than vertebrate ciliary pigments and uses a Gq signaling pathway, in contrast to the Gt pathway used by rods and cones. ipRGCs can recycle chromophore in the absence of the retinal pigment epithelium and are highly resistant to vitamin A depletion. This suggests that melanopsin employs a bistable sequential photon absorption mechanism typical of rhabdomeric opsins.

[1]  T. Badea,et al.  Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs , 2011, Nature.

[2]  M. Fussenegger,et al.  A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice , 2011, Science.

[3]  P. Kofuji,et al.  Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse , 2011, The Journal of comparative neurology.

[4]  D. Berson,et al.  Light Acts Through Melanopsin to Alter Retinal Waves and Segregation of Retinogeniculate Afferents , 2011, Nature Neuroscience.

[5]  Vladimir J. Kefalov,et al.  The Cone-specific visual cycle , 2011, Progress in Retinal and Eye Research.

[6]  H. Piggins,et al.  Multiple hypothalamic cell populations encoding distinct visual information , 2011, The Journal of physiology.

[7]  L. Birnbaumer,et al.  Intrinsic phototransduction persists in melanopsin‐expressing ganglion cells lacking diacylglycerol‐sensitive TRPC subunits , 2011, The European journal of neuroscience.

[8]  R. Hardie A brief history of trp: commentary and personal perspective , 2011, Pflügers Archiv - European Journal of Physiology.

[9]  Satchidananda Panda,et al.  Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System , 2010, PLoS biology.

[10]  Russell N Van Gelder,et al.  Melanopsin-dependent light avoidance in neonatal mice , 2010, Proceedings of the National Academy of Sciences.

[11]  G. Prusky,et al.  Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities , 2010, Nature Neuroscience.

[12]  Glen T. Prusky,et al.  Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision , 2010, Neuron.

[13]  D. Berson,et al.  Morphology and mosaics of melanopsin‐expressing retinal ganglion cell types in mice , 2010, The Journal of comparative neurology.

[14]  Hiroshi Momiji,et al.  Distinct Contributions of Rod, Cone, and Melanopsin Photoreceptors to Encoding Irradiance , 2010, Neuron.

[15]  U. Albrecht,et al.  CONES ARE REQUIRED FOR NORMAL TEMPORAL RESPONSES TO LIGHT OF PHASE SHIFTS AND CLOCK GENE EXPRESSION , 2010, Chronobiology international.

[16]  Tao Wang,et al.  Requirement for an Enzymatic Visual Cycle in Drosophila , 2010, Current Biology.

[17]  V. Kefalov,et al.  An Alternative Pathway Mediates the Mouse and Human Cone Visual Cycle , 2009, Current Biology.

[18]  Juan M. Angueyra,et al.  Light-transduction in melanopsin-expressing photoreceptors of Amphioxus , 2009, Proceedings of the National Academy of Sciences.

[19]  H. Heller,et al.  Melanopsin as a Sleep Modulator: Circadian Gating of the Direct Effects of Light on Sleep and Altered Sleep Homeostasis in Opn4−/− Mice , 2009, PLoS biology.

[20]  M. Rollag,et al.  A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder. , 2009, Journal of affective disorders.

[21]  J. Nathans,et al.  Distinct Roles of Transcription Factors Brn3a and Brn3b in Controlling the Development, Morphology, and Function of Retinal Ganglion Cells , 2009, Neuron.

[22]  Vladimir J. Kefalov,et al.  Intra-Retinal Visual Cycle Required for Rapid and Complete Cone Dark Adaptation , 2009, Nature Neuroscience.

[23]  P. Kofuji,et al.  Functional and Morphological Differences among Intrinsically Photosensitive Retinal Ganglion Cells , 2009, The Journal of Neuroscience.

[24]  K. Yau,et al.  Photon capture and signalling by melanopsin retinal ganglion cells , 2008, Nature.

[25]  S. Hattar,et al.  Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation , 2008, Proceedings of the National Academy of Sciences.

[26]  R. Masland,et al.  Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin , 2008, Proceedings of the National Academy of Sciences.

[27]  R. V. Van Gelder,et al.  Absence of Long-Wavelength Photic Potentiation of Murine Intrinsically Photosensitive Retinal Ganglion Cell Firing In Vitro , 2008, Journal of biological rhythms.

[28]  L. P. Morin,et al.  Targeted Destruction of Photosensitive Retinal Ganglion Cells with a Saporin Conjugate Alters the Effects of Light on Mouse Circadian Rhythms , 2008, PloS one.

[29]  Russell G Foster,et al.  The acute light-induction of sleep is mediated by OPN4-based photoreception , 2008, Nature Neuroscience.

[30]  T. Cronin,et al.  Photochemistry of retinal chromophore in mouse melanopsin , 2008, Proceedings of the National Academy of Sciences.

[31]  A. Terakita,et al.  Gq‐coupled Rhodopsin Subfamily Composed of Invertebrate Visual Pigment and Melanopsin † , 2008, Photochemistry and photobiology.

[32]  Satchidananda Panda,et al.  Inducible Ablation of Melanopsin-Expressing Retinal Ganglion Cells Reveals Their Central Role in Non-Image Forming Visual Responses , 2008, PloS one.

[33]  Tsutomu Kouyama,et al.  Crystal structure of squid rhodopsin , 2008, Nature.

[34]  A. Terakita,et al.  Expression and comparative characterization of Gq‐coupled invertebrate visual pigments and melanopsin , 2008, Journal of neurochemistry.

[35]  T. Badea,et al.  Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision , 2008, Nature.

[36]  Kwoon Y. Wong,et al.  Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. , 2008, Journal of neurophysiology.

[37]  G. E. Pickard,et al.  Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus , 2008, The European journal of neuroscience.

[38]  G. E. Pickard,et al.  Light-Evoked Calcium Responses of Isolated Melanopsin-Expressing Retinal Ganglion Cells , 2007, The Journal of Neuroscience.

[39]  Howard M. Cooper,et al.  Melanopsin-Dependent Nonvisual Responses: Evidence for Photopigment Bistability In Vivo , 2007, Journal of biological rhythms.

[40]  B. Roska,et al.  Local Retinal Circuits of Melanopsin-Containing Ganglion Cells Identified by Transsynaptic Viral Tracing , 2007, Current Biology.

[41]  R. V. Van Gelder,et al.  Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses. , 2007, Investigative ophthalmology & visual science.

[42]  Samer Hattar,et al.  Central projections of melanopsin‐expressing retinal ganglion cells in the mouse , 2006, The Journal of comparative neurology.

[43]  R. Camplejohn,et al.  Math and Fossils Resolve a Debate on Dinosaur Metabolism , 2006, PLoS biology.

[44]  M. Menaker,et al.  Nonvisual light responses in the Rpe65 knockout mouse: Rod loss restores sensitivity to the melanopsin system , 2006, Proceedings of the National Academy of Sciences.

[45]  R. V. Van Gelder,et al.  Inner retinal photoreception independent of the visual retinoid cycle , 2006, Proceedings of the National Academy of Sciences.

[46]  Krzysztof Palczewski,et al.  G protein-coupled receptor rhodopsin. , 2006, Annual review of biochemistry.

[47]  C. Allen,et al.  The light‐activated signaling pathway in SCN‐projecting rat retinal ganglion cells , 2006, The European journal of neuroscience.

[48]  T. Holy,et al.  Physiologic Diversity and Development of Intrinsically Photosensitive Retinal Ganglion Cells , 2005, Neuron.

[49]  K. Yau,et al.  Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  K. Yau,et al.  Melanopsin-Dependent Photoreception Provides Earliest Light Detection in the Mammalian Retina , 2005, Current Biology.

[51]  Kwoon Y. Wong,et al.  Induction of photosensitivity by heterologous expression of melanopsin , 2005, Nature.

[52]  J. Bellingham,et al.  Addition of human melanopsin renders mammalian cells photoresponsive , 2005, Nature.

[53]  Satchidananda Panda,et al.  Illumination of the Melanopsin Signaling Pathway , 2005, Science.

[54]  J. Hannibal,et al.  Melanopsin containing retinal ganglion cells are light responsive from birth , 2004, Neuroreport.

[55]  A. Sancar,et al.  Further evidence for the role of cryptochromes in retinohypothalamic photoreception/phototransduction. , 2004, Brain research. Molecular brain research.

[56]  Thomas W Cronin,et al.  Melanopsin forms a functional short-wavelength photopigment. , 2003, Biochemistry.

[57]  C. Wadelius,et al.  Expression and localization of bestrophin during normal mouse development. , 2003, Investigative ophthalmology & visual science.

[58]  Satchidananda Panda,et al.  Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice , 2003, Science.

[59]  M. Biel,et al.  Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice , 2003, Nature.

[60]  D. Copenhagen,et al.  Visual Stimulation Is Required for Refinement of ON and OFF Pathways in Postnatal Retina , 2003, Neuron.

[61]  D. Berson,et al.  Strange vision: ganglion cells as circadian photoreceptors , 2003, Trends in Neurosciences.

[62]  R. Foster,et al.  Expression of opsin genes early in ocular development of humans and mice. , 2003, Experimental eye research.

[63]  R. V. Van Gelder,et al.  Reduced Pupillary Light Responses in Mice Lacking Cryptochromes , 2003, Science.

[64]  K. Yau,et al.  Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice , 2003, Science.

[65]  N. Mrosovsky,et al.  Impaired Masking Responses to Light in Melanopsin‐Knockout Mice , 2003, Chronobiology International.

[66]  Bruce F O'Hara,et al.  Role of Melanopsin in Circadian Responses to Light , 2002, Science.

[67]  Satchidananda Panda,et al.  Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting , 2002, Science.

[68]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[69]  K. Yau,et al.  Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity , 2002, Science.

[70]  D. Berson,et al.  Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock , 2002, Science.

[71]  Scarla J. Weeks,et al.  Anatomy: Photoreceptive net in the mammalian retina , 2002, Nature.

[72]  Jun Lu,et al.  Melanopsin in cells of origin of the retinohypothalamic tract , 2001, Nature Neuroscience.

[73]  R. Hardie,et al.  Phototransduction in Drosophila melanogaster. , 2001, The Journal of experimental biology.

[74]  R. V. Van Gelder,et al.  Preservation of light signaling to the suprachiasmatic nucleus in vitamin A-deficient mice , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Roger C. Hardie,et al.  Visual transduction in Drosophila , 2001, Nature.

[76]  J. García-Fernández,et al.  Ontogeny of a photic response in the retina and suprachiasmatic nucleus in the mouse. , 2000, Brain research. Developmental brain research.

[77]  W. P. Hayes,et al.  A Novel Human Opsin in the Inner Retina , 2000, The Journal of Neuroscience.

[78]  R. Foster,et al.  Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. , 1999, Science.

[79]  R. Benca,et al.  Effects of lighting conditions on sleep and wakefulness in albino Lewis and pigmented Brown Norway rats. , 1998, Sleep.

[80]  J. Ottenweller,et al.  Daily Patterns of Running Wheel Activity in Male Anophthalmic Mice , 1998, Physiology & Behavior.

[81]  W. P. Hayes,et al.  Melanopsin: An opsin in melanophores, brain, and eye. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[82]  B. Matsumoto,et al.  Retinoid cycling proteins redistribute in light‐/dark‐adapted octopus retinas , 1995, The Journal of comparative neurology.

[83]  P. Hargrave,et al.  Rhodopsin and phototransduction: a model system for G protein‐linked receptors , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[84]  P. McNaughton,et al.  Development of the light response in neonatal mammalian rods , 1991, Nature.

[85]  T. Seki,et al.  Metaretinochrome in membranes as an effective donor of 11-cis retinal for the synthesis of squid rhodopsin , 1984, The Journal of general physiology.

[86]  S. Hochstein,et al.  Transduction in invertebrate photoreceptors: role of pigment bistability. , 1983, Physiological reviews.

[87]  K. Tsuji,et al.  Entrainment of the circadian activity rhythm to the light cycle: Effective light intensity for a Zeitgeber in the retinal degenerate C3H mouse and the normal C57BL mouse , 1980, Physiology & Behavior.

[88]  Clyde E. Keeler,et al.  IRIS MOVEMENTS IN BLIND MICE , 1927 .

[89]  Marten Postma,et al.  1.05 – Phototransduction in Microvillar Photoreceptors of Drosophila and Other Invertebrates , 2008 .

[90]  A. Sancar,et al.  Structure and function of animal cryptochromes. , 2007, Cold Spring Harbor symposia on quantitative biology.

[91]  T. Badea,et al.  RESEARCH ARTICLE Open Access Development of melanopsin-based irradiance detecting circuitry , 2022 .