Free-vibration analysis of laminated plates with embedded shear-mode piezoceramic layers

[1]  Zheng Zhong,et al.  Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate , 2003 .

[2]  R. Batra,et al.  Missing frequencies in previous exact solutions of free vibrations of simply supported rectangular plates , 2003 .

[3]  Linfeng Chen,et al.  State vector approach to analysis of multilayered magneto-electro-elastic plates , 2003 .

[4]  Jiann-Quo Tarn,et al.  A state space formalism for piezothermoelasticity , 2002 .

[5]  Li-Jeng Huang,et al.  Saint-Venant end effects in multilayered piezoelectric laminates , 2002 .

[6]  Linfeng Chen,et al.  The state vector methods for space axisymmetric problems in multilayered piezoelectric media , 2002 .

[7]  Y. Cheung,et al.  The exact solution of coupled thermoelectroelastic behavior of piezoelectric laminates , 2002 .

[8]  Jean-François Deü,et al.  A two-dimensional closed-form solution for the free-vibrations analysis of piezoelectric sandwich plates , 2002 .

[9]  Jean-François Deü,et al.  Free vibrations of simply-supported piezoelectric adaptive plates: an exact sandwich formulation , 2002 .

[10]  A. Benjeddou,et al.  Piezoelectric Transverse Shear Actuation and Sensing of Plates, Part 2: Application and Analysis , 2001 .

[11]  A. Benjeddou,et al.  Piezoelectric Transverse Shear Actuation and Sensing of Plates, Part 1: A Three-Dimensional Mixed State Space Formulation , 2001 .

[12]  S. Vel,et al.  Exact solution for the cylindrical bending of laminated plates with embedded piezoelectric shear actuators , 2001 .

[13]  Romesh C. Batra,et al.  Exact Solution for Rectangular Sandwich Plates with Embedded Piezoelectric Shear Actuators , 2001 .

[14]  Ayech Benjeddou,et al.  Advances in piezoelectric finite element modeling of adaptive structural elements: a survey , 2000 .

[15]  H. Ding,et al.  New state space formulations for transversely isotropic piezoelasticity with application , 2000 .

[16]  D. Saravanos,et al.  Mechanics and Computational Models for Laminated Piezoelectric Beams, Plates, and Shells , 1999 .

[17]  C. Sun,et al.  Analysis of a sandwich plate containing a piezoelectric core , 1999 .

[18]  Rongqiao Xu,et al.  ON FREE VIBRATION OF A PIEZOELECTRIC COMPOSITE RECTANGULAR PLATE , 1998 .

[19]  Romesh C. Batra,et al.  The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and actuators , 1997 .

[20]  Ahmed K. Noor,et al.  Three-Dimensional Solutions for Free Vibrations of Initially-Stressed Thermoelectroelastic Multilayered Plates , 1997 .

[21]  Romesh C. Batra,et al.  Changes in Frequencies of a Laminated Plate Caused by Embedded Piezoelectric Layers , 1997 .

[22]  Jong S. Lee,et al.  Exact electroelastic analysis of piezoelectric laminae via state space approach , 1996 .

[23]  Dimitris A. Saravanos,et al.  Exact free‐vibration analysis of laminated plates with embedded piezoelectric layers , 1995 .

[24]  N. Rogacheva The Theory of Piezoelectric Shells and Plates , 1994 .

[25]  L. Bahar Discussion: “A Mixed Method in Elasticity” (Rao, N. S. V. K., and Das, Y. C., 1977, ASME J. Appl. Mech., 44, pp. 51–56) , 1977 .

[26]  Y. C. Das,et al.  A Mixed Method in Elasticity , 1977 .