Homotopic Fréchet distance between curves or, walking your dog in the woods in polynomial time

The Frechet distance between two curves in the plane is the minimum length of a leash that allows a dog and its owner to walk along their respective curves, from one end to the other, without backtracking. We propose a natural extension of Frechet distance to more general metric spaces, which requires the leash itself to move continuously over time. For example, for curves in the punctured plane, the leash cannot pass through or jump over the obstacles (''trees''). We describe a polynomial-time algorithm to compute the homotopic Frechet distance between two given polygonal curves in the plane minus a given set of polygonal obstacles.

[1]  Raimund Seidel,et al.  The Nature and Meaning of Perturbations in Geometric Computing , 1994, STACS.

[2]  Anil Maheshwari,et al.  On computing Fréchet distance of two paths on a convex polyhedron , 2005, EuroCG.

[3]  Jack Snoeyink,et al.  Testing Homotopy for Paths in the Plane , 2002, SCG '02.

[4]  Stephen G. Kobourov,et al.  Computing homotopic shortest paths efficiently , 2006, Comput. Geom..

[5]  Atlas F. Cook,et al.  Geodesic Fréchet distance inside a simple polygon , 2010, TALG.

[6]  Remco C. Veltkamp,et al.  Parametric search made practical , 2004, Comput. Geom..

[7]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class , 1994, Comput. Geom..

[8]  Sergey Bereg,et al.  Computing homotopic shortest paths in the plane , 2003, SODA.

[9]  Maike Buchin,et al.  Semi-computability of the Fréchet distance between surfaces , 2005, EuroCG.

[10]  R Vanoostrum Parametric search made practical*1 , 2004 .

[11]  Subhash Suri,et al.  An Optimal Algorithm for Euclidean Shortest Paths in the Plane , 1999, SIAM J. Comput..

[12]  Leonidas J. Guibas,et al.  New Similarity Measures between Polylines with Applications to Morphing and Polygon Sweeping , 2002, Discret. Comput. Geom..

[13]  Leonidas J. Guibas,et al.  Optimal Shortest Path Queries in a Simple Polygon , 1989, J. Comput. Syst. Sci..

[14]  Michel Pocchiola,et al.  Minimal Tangent Visibility Graphs , 1996, Comput. Geom..

[15]  Dima Grigoriev,et al.  Polytime algorithm for the shortest path in a homotopy class amidst semi-algebraic obstacles in the plane , 1998, ISSAC '98.

[16]  Stephen G. Kobourov,et al.  Computing homotopic shortest paths efficiently , 2002, Comput. Geom..

[17]  Bernard Chazelle,et al.  A theorem on polygon cutting with applications , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[18]  Sergei Bespamyatnikh Encoding Homotopy of Paths in the Plane , 2004 .

[19]  D. T. Lee,et al.  Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.

[20]  Chiranjib Bhattacharyya,et al.  Fréchet Distance Based Approach for Searching Online Handwritten Documents , 2007 .

[21]  Richard Cokt Slowing Down Sorting Networks to Obtain Faster Sorting Algorithms , 1984 .

[22]  Richard Cole,et al.  Parallel merge sort , 1988, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[23]  Atlas F. Cook,et al.  Geodesic Fréchet distance inside a simple polygon , 2008, TALG.

[24]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[25]  Michel Pocchiola,et al.  Computing the visibility graph via pseudo-triangulations , 1995, SCG '95.

[26]  John Hershberger,et al.  A New Data Structure for Shortest Path Queries in a Simple Polygon , 1991, Inf. Process. Lett..

[27]  Boris Aronov,et al.  Fréchet Distance for Curves, Revisited , 2006, ESA.

[28]  H. Mannila,et al.  Computing Discrete Fréchet Distance ∗ , 1994 .

[29]  Atlas F. Cook,et al.  GEODESIC FRÉCHET DISTANCE WITH POLYGONAL OBSTACLES , 2008 .

[30]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).