Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - I. Theoretical model – Mass-loss history unravelled in VY CMa
暂无分享,去创建一个
A. de Koter | L.B.F.M. Waters | K. Justtanont | A. Tielens | K. Justtanont | L. Decin | A. D. Koter | S. Hony | L. Waters | A.G.G.M. Tielens | S. Hony | L. Waters | L. Decin | A. Tielens
[1] S. Kwok. Radiation pressure on grains as a mechanism for mass loss in red giants. , 1975 .
[2] B. Rodgers,et al. The temperature of the circumstellar envelope of Alpha Orionis , 1991 .
[3] A. Zijlstra,et al. Asymptotic giant branch superwind speed at low metallicity , 2004 .
[4] G. Herbig. VY CANIS MAJORIS. III. POLARIZATION AND STRUCTURE OF THE NEBULOSITY. , 1972 .
[5] T. Millar,et al. Chemical modelling of molecular sources – VI. Carbon-bearing molecules in oxygen-rich circumstellar envelopes , 1988 .
[6] M. Reid,et al. The stellar velocity of long-period variables. , 1976 .
[7] C. McKee,et al. Far-infrared rotational emission by carbon monoxide , 1982 .
[8] A. Zijlstra,et al. The superwind mass-loss rate of the metal-poor carbon star LI-LMC 1813 in the LMC cluster KMHK 1603 , 2003, astro-ph/0302083.
[9] A. Tielens,et al. Theoretical studies of the infrared emission from circumstellar dust shells: the infrared characteristics of circumstellar silicates and the mass-loss rate of oxygen-rich late-type giants. , 1989, The Astrophysical journal.
[10] A. Zijlstra,et al. The AGB superwind speed at low metallicity , 2004, astro-ph/0410120.
[11] A. Tielens,et al. Modeling of the Dust and Gas Outflows from OH 26.5+0.6: The Superwind , 1996 .
[12] A. Tielens,et al. Molecular rotational line profiles from oxygen-rich red giant winds , 1994 .
[13] P. J. Huggins,et al. The photoproduction of circumstellar OH maser shells , 1982 .
[14] C. Townes,et al. Characteristics of dust shells around 13 late-type stars. , 1994 .
[15] G. Diercksen,et al. Rate constants for rotational transitions of CO scattered by para-hydrogen , 1985 .
[16] D. Muhleman,et al. Very long baseline interferometric observations of the hydroxyl masers in VY Canis Majoris , 1978 .
[17] H. M. Lee,et al. Optical properties of interstellar graphite and silicate grains , 1984 .
[18] J. Castor. Spectral line formation in Wolf-Rayet envelopes. , 1970 .
[19] D. Goorvitch,et al. Calculation of (12)C(16)O and (13)C(16)O X(1)Sigma(+) rovibrational intensities for v less than or equal to 20 and J less than or equal to 150 , 1994 .
[20] N. Grevesse,et al. Abundances of the elements: Meteoritic and solar , 1989 .
[21] S. Green,et al. Collisional Excitation of H 2O by H 2 Molecules , 1996 .
[22] A Goldman,et al. The HITRAN database: 1986 edition. , 1987, Applied optics.
[23] D. Hollenbach,et al. Molecule formation and infrared emission in fast interstellar shocks. I Physical processes , 1979 .
[24] V. Icke,et al. UvA-DARE ( Digital Academic Repository ) Origin of quasi-periodic shells in dust forming AGB winds , 2022 .
[25] D. G. Hummer,et al. Solution of the comoving-frame equation of transfer in spherically symmetric flows. I. Computational method for equivalent-two-level-atom source functions. , 1975 .
[26] A. D. McLean,et al. Improved collisional excitation rates for interstellar water. , 1993, The Astrophysical journal. Supplement series.
[27] M. Morris. Molecular emission from expanding envelopes around evolved stars. III - Thermal and maser CO emission , 1980 .
[28] S. Gaposchkin,et al. Moving Envelopes of Stars , 1960 .
[29] M. Juvela,et al. Numerical methods for non-LTE line radiative transfer: Performance and convergence characteristics , 2002, astro-ph/0208503.
[30] R. Liseau,et al. The ISO-LWS map of the Serpens cloud core. II. The line spectra , 2002, astro-ph/0202092.
[31] N. Epchtein,et al. Mass-loss from dusty, low outflow-velocity AGB stars - I. Wind structure and mass-loss rates , 2003 .
[32] G. Knapp,et al. Mass loss from evolved stars. III: Mass loss rates for fifty stars from CO J=1−0 observations , 1985 .
[33] P. J. Huggins,et al. Detection of CO emission at 1.3 millimeters from the Betelgeuse circumstellar shell. , 1980 .
[34] M. Rowan-Robinson,et al. Radiative transfer in axisymmetric dust clouds , 1990, Monthly Notices of the Royal Astronomical Society.
[35] P. Bowers,et al. Circumstellar envelope structure of late-type stars , 1983 .
[36] N. Scoville,et al. OH-IR stars. I. Physical properties of circumstellar envelopes , 1976 .
[37] P. Bowers,et al. Expanding molecular envelopes around evolved stars. , 1977 .
[38] Harm Jan Habing,et al. Asymptotic giant branch stars , 2004 .
[39] Alexander G. G. M. Tielens,et al. Photodissociation Regions in the Interstellar Medium of Galaxies , 1999 .
[40] D. Hollenbach,et al. The gas-grain interaction in the interstellar medium - Thermal accommodation and trapping , 1983 .
[41] H. M. Dyck,et al. Carbon Monoxide Emission from Stars in the IRAS and Revised AFGL Catalogs. I. Mass Loss Driven by Radiation Pressure on Dust Grains , 1986 .
[42] D. Hollenbach,et al. Molecule Formation and Infrared Emission in Fast Interstellar Shocks. III. Results for J Shocks in Molecular Clouds , 1989 .
[43] K. Leuven,et al. Mass loss and rotational CO emission from Asymptotic Giant Branch stars , 2003, astro-ph/0305207.
[44] I. Iben,et al. Asymptotic Giant Branch Evolution and Beyond , 1983 .
[45] M. Harwit,et al. The Infrared Continuum Spectrum of VY Canis Majoris , 2001, astro-ph/0109148.
[46] R. Shah,et al. Discovery of Multiple Molecular Shells in the Outer Envelope of IRC +10216 , 2004 .
[47] A. Tielens,et al. Mass loss from OH/IR stars - Models for the infrared emission of circumstellar dust shells , 1992 .
[48] C P.,et al. THE LAST GASPS OF VY CANIS MAJORIS : APERTURE SYNTHESIS AND ADAPTIVE OPTICS IMAGERY , 1999 .
[49] D. Buhl,et al. Detection of new stellar sources of vibrationally excited silicon monoxide maser emission at 6.95 millimeters , 1975 .
[50] H. Olofsson,et al. Probing the Mass Loss Rate History of Carbon Stars Using CO Line and Dust Continuum Emission , 2002, astro-ph/0206078.
[51] G. Knapp,et al. Mass Loss from Evolved Stars. VII. OH Maser Shell Radii and Mass-Loss Rates for OH/IR Stars , 1987 .
[52] A. Tielens. Stationary flows in the circumstellar envelopes of M giants , 1983 .
[53] P. J. Huggins,et al. Mass loss from evolved stars. I. Observations of 17 stars in the CO(2-1) line. , 1982 .
[54] G. J. Matthews,et al. Asymptotic-giant-branch stars , 1992, Nature.
[55] K. M. Merrill,et al. Studies of the infrared source CRL 2688 , 1975 .
[56] K. Nordsieck,et al. The Size distribution of interstellar grains , 1977 .
[57] On the origin of the grain-size spectrum of interstellar dust , 1980 .
[58] J. Holtzman,et al. Imaging of the Egg Nebula (CRL 2688) with WFPC2/HST: A History of AGB/Post-AGB Giant Branch Mass Loss , 1998 .
[59] P. Goldsmith,et al. Molecular cooling and thermal balance of dense interstellar clouds , 1978 .
[60] M. Lindqvist,et al. Properties of detached shells around carbon stars Evidence of interacting winds , 2005, astro-ph/0503245.
[61] P. J. Huggins,et al. The photodissociation of CO in circumstellar envelopes , 1988 .
[62] A. Tielens,et al. THE PHOTOELECTRIC HEATING MECHANISM FOR VERY SMALL GRAPHITIC GRAINS AND POLYCYCLIC AROMATIC HYDROCARBONS , 1994 .
[63] Robert D. Gehrz,et al. The Asymmetric Nebula Surrounding the Extreme Red Supergiant Vy Canis Majoris , 2001 .
[64] A. Tielens,et al. Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .
[65] Bernd Freytag,et al. Spots on the surface of Betelgeuse -- Results from new 3D stellar convection models , 2002 .
[66] N. Soker. A Solar-like Cycle in Asymptotic Giant Branch Stars , 2000, astro-ph/0001281.