The differential lambda-calculus

We present an extension of the lambda-calculus with differential constructions. We state and prove some basic results (confluence, strong normalization in the typed case), and also a theorem relating the usual Taylor series of analysis to the linear head reduction of lambda-calculus.

[1]  Vincent Danos,et al.  Game semantics and abstract machines , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[2]  Gavin M. Bierman What is a Categorical Model of Intuitionistic Linear Logic? , 1995, TLCA.

[3]  Pierre-Louis Curien,et al.  A semantics for lambda calculi with resources , 1999, Mathematical Structures in Computer Science.

[4]  Thorsten Altenkirch,et al.  Derivatives of Containers , 2003, TLCA.

[5]  Jean-Yves Girard Coherent Banach Spaces: A Continuous Denotational Semantics , 1999, Theor. Comput. Sci..

[6]  Vincent Danos,et al.  Head Linear Reduction , 2004 .

[7]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[8]  de Ng Dick Bruijn Generalizing Automath by means of a lambda-typed lambda calculus , 1987 .

[9]  Thomas Ehrhard,et al.  On Köthe sequence spaces and linear logic , 2002, Mathematical Structures in Computer Science.

[10]  R. Ho Algebraic Topology , 2022 .

[11]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[12]  P. Michor,et al.  The Convenient Setting of Global Analysis , 1997 .

[13]  Gérard Boudol,et al.  The Lambda-Calculus with Multiplicities (Abstract) , 1993, CONCUR.

[14]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .