Efficient k-nearest neighbor search on moving object trajectories

With the growing number of mobile applications, data analysis on large sets of historical moving objects trajectories becomes increasingly important. Nearest neighbor search is a fundamental problem in spatial and spatio-temporal databases. In this paper, we consider the following problem: Given a set of moving object trajectories D and a query trajectory mq, find the k nearest neighbors to mq within D for any instant of time within the lifetime of mq. We assume D is indexed in a 3D-R-tree and employ a filter-and-refine strategy. The filter step traverses the index and creates a stream of so-called units (linear pieces of a trajectory) as a superset of the units required to build the result of the query. The refinement step processes an ordered stream of units and determines the pieces of units forming the precise result. To support the filter step, for each node p of the index, in preprocessing a time-dependent coverage function Cp(t) is computed which is the number of trajectories represented in p present at time t. Within the filter step, sophisticated data structures are used to keep track of the aggregated coverages of the nodes seen so far in the index traversal to enable pruning. Moreover, the R-tree index is built in a special way to obtain coverage functions that are effective for pruning. As a result, one obtains a highly efficient kNN algorithm for moving data and query points that outperforms the two competing algorithms by a wide margin. Implementations of the new algorithms and of the competing techniques are made available as well. Algorithms can be used in a system context including, for example, visualization and animation of results. Experiments of the paper can be easily checked or repeated, and new experiments be performed.

[1]  Nikos Pelekis,et al.  Trajectory Compression under Network Constraints , 2009, SSTD.

[2]  Hao Zhong-xiao Modeling and querying moving objects , 2005 .

[3]  Christian Böhm,et al.  Improving the Query Performance of High-Dimensional Index Structures by Bulk-Load Operations , 1998, EDBT.

[4]  Ralf Hartmut Güting,et al.  A data model and data structures for moving objects databases , 2000, SIGMOD '00.

[5]  Amit P. Sheth,et al.  Semantic (Web) Technology In Action: Ontology Driven Information Systems for Search, Integration and Analysis , 2003, IEEE Data Eng. Bull..

[6]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[7]  Kyriakos Mouratidis,et al.  Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring , 2005, SIGMOD '05.

[8]  Markus Schneider,et al.  A foundation for representing and querying moving objects , 2000, TODS.

[9]  Jörg Keller,et al.  Das GCA-Modell im Vergleich zum PRAM-Modell , 2009 .

[10]  Yannis Manolopoulos,et al.  Fast Nearest-Neighbor Query Processing in Moving-Object Databases , 2003, GeoInformatica.

[11]  Bernhard Seeger,et al.  A Generic Approach to Bulk Loading Multidimensional Index Structures , 1997, VLDB.

[12]  Yufei Tao,et al.  Historical spatio-temporal aggregation , 2005, TOIS.

[13]  Yunjun Gao,et al.  Efficient Algorithms for Historical Continuous k NN Query Processing over Moving Object Trajectories , 2007, APWeb/WAIM.

[14]  Christoph Beierle,et al.  Dynamics of knowledge and belief: Workshop at the 30th annual German conference on artificial intelligence, KI-2007, Osnabrück, Germany, September 10, 2007 : proceedings , 2007 .

[15]  Yufei Tao,et al.  Time-parameterized queries in spatio-temporal databases , 2002, SIGMOD '02.

[16]  Yufei Tao,et al.  Continuous Nearest Neighbor Search , 2002, VLDB.

[17]  Ralf Hartmut Güting,et al.  BerlinMOD: a benchmark for moving object databases , 2009, The VLDB Journal.

[18]  Jignesh M. Patel,et al.  Indexing Large Trajectory Data Sets With SETI , 2003, CIDR.

[19]  Yannis Theodoridis,et al.  Index-based Most Similar Trajectory Search , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[20]  Hans-Joachim Lenz,et al.  The R/sub a/*-tree: an improved R*-tree with materialized data for supporting range queries on OLAP-data , 1998, Proceedings Ninth International Workshop on Database and Expert Systems Applications (Cat. No.98EX130).

[21]  Christian S. Jensen,et al.  Nearest neighbor and reverse nearest neighbor queries for moving objects , 2002, Proceedings International Database Engineering and Applications Symposium.

[22]  Yunjun Gao,et al.  Efficient k-Nearest-Neighbor Search Algorithms for Historical Moving Object Trajectories , 2007, Journal of Computer Science and Technology.

[23]  Jörg Sander,et al.  A Trajectory Splitting Model for Efficient Spatio-Temporal Indexing , 2005, VLDB.

[24]  Dieter Pfoser,et al.  Novel Approaches in Query Processing for Moving Object Trajectories , 2000, VLDB 2000.

[25]  Yuan-Ko Huang,et al.  Continuous K-Nearest Neighbor Query for Moving Objects with Uncertain Velocity , 2009, GeoInformatica.

[26]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[27]  Panos Kalnis,et al.  Efficient OLAP Operations in Spatial Data Warehouses , 2001, SSTD.

[28]  Bernhard Fechner Dynamische Fehlererkennungs- und behebungsmechanismen für verlässliche Mikroprozessoren , 2008 .

[29]  Ralf Hartmut Güting,et al.  User defined topological predicates in database systems , 2010, GeoInformatica.

[30]  Walid G. Aref,et al.  Spatio-Temporal Access Methods , 2003, IEEE Data Eng. Bull..

[31]  Hanan Samet,et al.  Distance browsing in spatial databases , 1999, TODS.

[32]  Nick Roussopoulos,et al.  Nearest neighbor queries , 1995, SIGMOD '95.

[33]  Sharad Mehrotra,et al.  Progressive approximate aggregate queries with a multi-resolution tree structure , 2001, SIGMOD '01.

[34]  Andre Osterloh,et al.  A Lower Bound for Oblivious Dimensional Routing , 2009, Euro-Par.

[35]  Xiaohui Yu,et al.  Monitoring k-nearest neighbor queries over moving objects , 2005, 21st International Conference on Data Engineering (ICDE'05).

[36]  Walid G. Aref,et al.  SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases , 2005, 21st International Conference on Data Engineering (ICDE'05).

[37]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[38]  Dino Pedreschi,et al.  Mobility, Data Mining and Privacy - Geographic Knowledge Discovery , 2008, Mobility, Data Mining and Privacy.

[39]  Bo Xu,et al.  Moving objects databases: issues and solutions , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[40]  A. Prasad Sistla,et al.  Modeling and querying moving objects , 1997, Proceedings 13th International Conference on Data Engineering.

[41]  Nick Roussopoulos,et al.  K-Nearest Neighbor Search for Moving Query Point , 2001, SSTD.

[42]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC '03.

[43]  Claus Udo Hönig Optimales Task-Graph-Scheduling für homogene und heterogene Zielsysteme , 2008 .

[44]  Christian S. Jensen,et al.  Nearest and reverse nearest neighbor queries for moving objects , 2006, The VLDB Journal.

[45]  B. Fechner GPUs for Dependability , 2009 .

[46]  Tim vor der Brück Application of Machine Learning Algorithms for Automatic Knowledge Acquisition and Readability Analysis Technical Report , 2011 .

[47]  Hanan Samet,et al.  Continuous K-Nearest Neighbor Queries for Continuously Moving Points with Updates , 2003, VLDB.

[48]  Christian S. Jensen,et al.  Advances in Spatial and Temporal Databases: 7th International Symposium, SSTD 2001, Redondo Beach, CA, USA, July 12-15, 2001 Proceedings , 2001 .

[49]  Nikos Pelekis,et al.  Algorithms for Nearest Neighbor Search on Moving Object Trajectories , 2007, GeoInformatica.

[50]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[51]  Joachim Gudmundsson,et al.  Computing longest duration flocks in trajectory data , 2006, GIS '06.