Learning non-redundant codebooks for classifying complex objects

Codebook-based representations are widely employed in the classification of complex objects such as images and documents. Most previous codebook-based methods construct a single codebook via clustering that maps a bag of low-level features into a fixed-length histogram that describes the distribution of these features. This paper describes a simple yet effective framework for learning multiple non-redundant codebooks that produces surprisingly good results. In this framework, each codebook is learned in sequence to extract discriminative information that was not captured by preceding codebooks and their corresponding classifiers. We apply this framework to two application domains: visual object categorization and document classification. Experiments on large classification tasks show substantial improvements in performance compared to a single codebook or codebooks learned in a bagging style.

[1]  Naftali Tishby,et al.  The Power of Word Clusters for Text Classification , 2006 .

[2]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[3]  Frédéric Jurie,et al.  Fast Discriminative Visual Codebooks using Randomized Clustering Forests , 2006, NIPS.

[4]  Thomas G. Dietterich,et al.  Principal Curvature-Based Region Detector for Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Naftali Tishby,et al.  Unsupervised document classification using sequential information maximization , 2002, SIGIR '02.

[6]  Gabriela Csurka,et al.  Adapted Vocabularies for Generic Visual Categorization , 2006, ECCV.

[7]  Andrew McCallum,et al.  Distributional clustering of words for text classification , 1998, SIGIR '98.

[8]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[9]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[10]  Rong Jin,et al.  Unifying discriminative visual codebook generation with classifier training for object category recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[12]  Thomas G. Dietterich,et al.  Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects , 2007, 2007 IEEE Workshop on Applications of Computer Vision (WACV '07).

[13]  Inderjit S. Dhillon,et al.  Simultaneous Unsupervised Learning of Disparate Clusterings , 2008, Stat. Anal. Data Min..

[14]  Jiri Matas,et al.  Weighted Sampling for Large-Scale Boosting , 2008, BMVC.

[15]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[16]  Inderjit S. Dhillon,et al.  A Divisive Information-Theoretic Feature Clustering Algorithm for Text Classification , 2003, J. Mach. Learn. Res..

[17]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[18]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[19]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[20]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[21]  Ying Cui,et al.  Non-redundant Multi-view Clustering via Orthogonalization , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[22]  Ran El-Yaniv,et al.  Distributional Word Clusters vs. Words for Text Categorization , 2003, J. Mach. Learn. Res..

[23]  C. Schmid,et al.  Object Class Recognition Using Discriminative Local Features , 2005 .

[24]  Gal Chechik,et al.  Extracting Relevant Structures with Side Information , 2002, NIPS.

[25]  Frédéric Jurie,et al.  Creating efficient codebooks for visual recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[26]  Antonio Criminisi,et al.  Object categorization by learned universal visual dictionary , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[27]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[28]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[29]  Peter Auer,et al.  Generic object recognition with boosting , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Thomas G. Dietterich,et al.  Automated Insect Identification through Concatenated Histograms of Local Appearance Features , 2007, WACV.

[31]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.