Synthesis and characterization of cellobiose-derived oligosaccharides with Bifidogenic activity by glucansucrase E81

[1]  S. Rodrigues,et al.  Cashew apple juice containing gluco-oligosaccharides, dextran, and tagatose promotes probiotic microbial growth , 2021 .

[2]  E. Dertli,et al.  Production of lactose derivative hetero-oligosaccharides from whey by glucansucrase E81 and determination of prebiotic functions , 2021 .

[3]  Mohammed A. Balubaid,et al.  Optimization of lactose derivative hetero-oligosaccharides production using whey as the acceptor molecule by an active glucansucrase , 2020, Biocatalysis and Biotransformation.

[4]  M. Gänzle,et al.  In vitro digestibility of commercial and experimental isomalto-oligosaccharides. , 2020, Food research international.

[5]  E. Dertli,et al.  Production of mannose-containing oligosaccharides by glucansucrase E81 and determination of their functional characteristics , 2020, Biocatalysis and Biotransformation.

[6]  E. Dertli,et al.  Bifidogenic effect and in vitro immunomodulatory roles of melibiose-derived oligosaccharides produced by the acceptor reaction of glucansucrase E81 , 2020 .

[7]  O. Sağdıç,et al.  Preparation of gentiobiose-derived oligosaccharides by glucansucrase E81 and determination of prebiotic and immune-modulatory functions. , 2019, Carbohydrate research.

[8]  Q. Yan,et al.  Preparation, characterization, and prebiotic activity of manno-oligosaccharides produced from cassia gum by a glycoside hydrolase family 134 β-mannanase. , 2019, Food chemistry.

[9]  O. Sağdıç,et al.  Characterization of a glucansucrase from Lactobacillus reuteri E81 and production of malto-oligosaccharides , 2019, Biocatalysis and Biotransformation.

[10]  O. Sağdıç,et al.  Characterization of a 4,6‑α‑glucanotransferase from Lactobacillus reuteri E81 and production of malto-oligosaccharides with immune-modulatory roles. , 2019, International journal of biological macromolecules.

[11]  I. Iliev,et al.  Synthesis of glucooligosaccharides with prebiotic potential by glucansucrase URE 13–300 acceptor reactions with maltose, raffinose and lactose , 2018, Engineering in life sciences.

[12]  A. Goyal,et al.  Gentio-oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase as prebiotics and as a supplement for functional foods with anti-cancer properties. , 2015, Food & function.

[13]  B. Dien,et al.  Structural characterization of (1→2)-β-xylose-(1→3)-α-arabinose-containing oligosaccharide products of extracted switchgrass (Panicum virgatum, L.) xylan after exhaustive enzymatic treatment with α-arabinofuranosidase and β-endo-xylanase. , 2014, Carbohydrate research.

[14]  F. J. Moreno,et al.  Selective fermentation of potential prebiotic lactose-derived oligosaccharides by probiotic bacteria , 2014 .

[15]  D. Sinderen,et al.  Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003 , 2012, Microbial biotechnology.

[16]  C. Skory,et al.  Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118 , 2012, Applied Microbiology and Biotechnology.

[17]  F. J. Moreno,et al.  Synthesis and characterization of a potential prebiotic trisaccharide from cheese whey permeate and sucrose by Leuconostoc mesenteroides dextransucrase. , 2012, Journal of agricultural and food chemistry.

[18]  M. Gänzle Enzymatic synthesis of galacto-oligosaccharides and other lactose derivatives (hetero-oligosaccharides) from lactose , 2012 .

[19]  M. L. Sanz,et al.  In vitro fermentation of alternansucrase raffinose-derived oligosaccharides by human gut bacteria. , 2011, Journal of agricultural and food chemistry.

[20]  A. Soria,et al.  Effect of dextransucrase cellobiose acceptor products on the growth of human gut bacteria. , 2011, Journal of agricultural and food chemistry.

[21]  C. Dunlap,et al.  Glucosylation of raffinose via alternansucrase acceptor reactions. , 2009, Carbohydrate research.

[22]  M. Tenkanen,et al.  Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches. , 2008, Carbohydrate research.

[23]  J. Garssen,et al.  Galacto‐oligosaccharides and long‐chain fructo‐oligosaccharides as prebiotics in infant formulas: A review , 2005, Acta paediatrica (Oslo, Norway : 1992). Supplement.

[24]  G. Gibson,et al.  Prebiotic properties of alternansucrase maltose-acceptor oligosaccharides. , 2005, Journal of agricultural and food chemistry.

[25]  G. Ĉoté,et al.  Growth of various intestinal bacteria on alternansucrase‐derived oligosaccharides , 2005, Letters in applied microbiology.

[26]  T. S. Manning,et al.  Microbial-gut interactions in health and disease. Prebiotics. , 2004, Best practice & research. Clinical gastroenterology.

[27]  M. Vignon,et al.  Novel oligosaccharides synthesized from sucrose donor and cellobiose acceptor by alternansucrase. , 2001, Carbohydrate research.

[28]  G. Ĉoté,et al.  Acceptor reactions of alternansucrase from Leuconostoc mesenteroides NRRL B-1355 , 1982 .

[29]  T. Pham Synthesis and characterization of lactose and lactulose derived oligosaccharides by glucansucrase and trans-sialidase enzymes , 2018 .

[30]  M. Tenkanen,et al.  Lactose- and cellobiose-derived branched trisaccharides and a sucrose-containing trisaccharide produced by acceptor reactions of Weissella confusa dextransucrase. , 2016, Food chemistry.

[31]  P. Gopal,et al.  Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20 , 2001 .