Synaptic Iontronic Devices for Brain-Mimicking Functions: Fundamentals and Applications.

Inspired by the information transmission mechanism in central nervous systems of life, synapse-mimic devices have been designed and fabricated for the propose of breaking the bottleneck of von Neum...

[1]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[2]  K. Martin,et al.  The Cell Biology of Synaptic Plasticity , 2011, Science.

[3]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[4]  R. Waser,et al.  Memristors: Devices, Models, and Applications , 2012 .

[5]  Ping Yu,et al.  A Bioinspired Light‐Controlled Ionic Switch Based on Nanopipettes , 2015 .

[6]  Youngjune Park,et al.  Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials. , 2017, ACS nano.

[7]  Ling-an Kong,et al.  Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors , 2017 .

[8]  Long Luo,et al.  Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability. , 2014, ACS nano.

[9]  Zhenan Bao,et al.  Stretchable organic optoelectronic sensorimotor synapse , 2018, Science Advances.

[10]  X. Miao,et al.  Nanochannel-Based Transport in an Interfacial Memristor Can Emulate the Analog Weight Modulation of Synapses. , 2019, Nano letters.

[11]  Jian Shi,et al.  A correlated nickelate synaptic transistor , 2013, Nature Communications.

[12]  G. Malliaras,et al.  Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors , 2015, Advanced materials.

[13]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[14]  George G. Malliaras,et al.  Steady‐State and Transient Behavior of Organic Electrochemical Transistors , 2007 .

[15]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[16]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[17]  A. Triller,et al.  The Dynamic Synapse , 2013, Neuron.

[18]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[19]  M. Bear,et al.  Synaptic plasticity: LTP and LTD , 1994, Current Opinion in Neurobiology.

[20]  Z. Siwy,et al.  Nanofluidic diode. , 2007, Nano letters.

[21]  Jianwen Zhao,et al.  Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thin‐Film Transistors , 2017 .

[22]  George G. Malliaras,et al.  Neuromorphic device architectures with global connectivity through electrolyte gating , 2017, Nature Communications.

[23]  Hangbing Lv,et al.  Emulating Short-Term and Long-Term Plasticity of Bio-Synapse Based on Cu/a-Si/Pt Memristor , 2017, IEEE Electron Device Letters.

[24]  Armantas Melianas,et al.  A biohybrid synapse with neurotransmitter-mediated plasticity , 2020, Nature Materials.

[25]  Fei Yu,et al.  Ionotronic Neuromorphic Devices for Bionic Neural Network Applications , 2019, physica status solidi (RRL) – Rapid Research Letters.

[26]  M. Alexe,et al.  Bi-ferroic memristive properties of multiferroic tunnel junctions , 2018 .

[27]  D. Attwell,et al.  Synaptic Energy Use and Supply , 2012, Neuron.

[28]  G. Malliaras Organic electrochemical transistors , 2020 .

[29]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[30]  Wade G Regehr,et al.  Short-term forms of presynaptic plasticity , 2011, Current Opinion in Neurobiology.

[31]  Kwang Bok Kim,et al.  Ionic circuits based on polyelectrolyte diodes on a microchip. , 2009, Angewandte Chemie.

[32]  P. I. Pavlov Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. , 1929, Annals of Neurosciences.

[33]  M. Marinella,et al.  A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. , 2017, Nature materials.

[34]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Wei Lu,et al.  Biorealistic Implementation of Synaptic Functions with Oxide Memristors through Internal Ionic Dynamics , 2015 .

[36]  Masaaki Niwa,et al.  ON-OFF switching mechanism of resistive–random–access–memories based on the formation and disruption of oxygen vacancy conducting channels , 2012 .

[37]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[38]  Y. Long,et al.  Electrochemical Sensing at a Confined Space. , 2020, Analytical chemistry.

[39]  Peng Lin,et al.  Fully memristive neural networks for pattern classification with unsupervised learning , 2018 .

[40]  A. Pereda,et al.  Electrical synapses and their functional interactions with chemical synapses , 2014, Nature Reviews Neuroscience.

[41]  Z. Siwy,et al.  Biomimetic potassium-selective nanopores , 2018, Science Advances.

[42]  Ali Khiat,et al.  Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses , 2016, Nature Communications.

[43]  Juan Liu,et al.  Transmembrane potential across single conical nanopores and resulting memristive and memcapacitive ion transport. , 2012, Journal of the American Chemical Society.

[44]  Qing Wan,et al.  Artificial synapse network on inorganic proton conductor for neuromorphic systems. , 2014, Nature communications.

[45]  George G. Malliaras,et al.  Synaptic plasticity functions in an organic electrochemical transistor , 2015 .

[46]  Shimeng Yu,et al.  Synaptic electronics: materials, devices and applications , 2013, Nanotechnology.

[47]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[48]  Hyunsang Hwang,et al.  Organic core-sheath nanowire artificial synapses with femtojoule energy consumption , 2016, Science Advances.

[49]  K. Jin,et al.  Energy-Efficient Artificial Synapses Based on Oxide Tunnel Junctions. , 2019, ACS applied materials & interfaces.

[50]  Yilun Ying,et al.  Nanopore-Based Single-Biomolecule Interfaces: From Infor-mation to Knowledge. , 2019, Journal of the American Chemical Society.

[51]  Reginald M. Penner,et al.  Solid-State Ionic Diodes Demonstrated in Conical Nanopores , 2017 .

[52]  Ping Yu,et al.  Biological Applications of Organic Electrochemical Transistors: Electrochemical Biosensors and Electrophysiology Recording , 2019, Front. Chem..

[53]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[54]  Ionic amplifying circuits inspired by electronics and biology , 2020, Nature Communications.

[55]  Yi Shi,et al.  Long-Term Synaptic Plasticity Emulated in Modified Graphene Oxide Electrolyte Gated IZO-Based Thin-Film Transistors. , 2016, ACS applied materials & interfaces.

[56]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[57]  M. Jo,et al.  All-Solid-State Synaptic Transistors with High-Temperature Stability Using Proton Pump Gating of Strongly Correlated Materials. , 2019, ACS applied materials & interfaces.

[58]  Candido Pirri,et al.  Memristive devices based on graphene oxide , 2015 .

[59]  Sung-Wook Nam,et al.  Ionic field effect transistors with sub-10 nm multiple nanopores. , 2009, Nano letters.

[60]  Qi Wen,et al.  Photo-induced ultrafast active ion transport through graphene oxide membranes , 2019, Nature Communications.

[61]  Masaru Nagai,et al.  Nanoionics‐Enabled Memristive Devices: Strategies and Materials for Neuromorphic Applications , 2017 .

[62]  K. Wexler A review of John R. Anderson's language, memory, and thought , 1978, Cognition.

[63]  Xiaojian Zhu,et al.  Nanoionic Resistive‐Switching Devices , 2019, Advanced Electronic Materials.

[64]  D. Feldman Synaptic mechanisms for plasticity in neocortex. , 2009, Annual review of neuroscience.

[65]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[66]  Ling-an Kong,et al.  Ion-gel gated field-effect transistors with solution-processed oxide semiconductors for bioinspired artificial synapses , 2016 .

[67]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[68]  Catherine D. Schuman,et al.  Memristive Ion Channel-Doped Biomembranes as Synaptic Mimics. , 2018, ACS nano.

[69]  Qingtian Zhang,et al.  Synaptic silicon-nanocrystal phototransistors for neuromorphic computing , 2019, Nano Energy.

[70]  Kai Sun,et al.  Tuning Ionic Transport in Memristive Devices by Graphene with Engineered Nanopores. , 2016, ACS nano.

[71]  Yang Hui Liu,et al.  Freestanding Artificial Synapses Based on Laterally Proton‐Coupled Transistors on Chitosan Membranes , 2015, Advanced materials.

[72]  Honglei Guo,et al.  Hydrogels as dynamic memory with forgetting ability , 2020, Proceedings of the National Academy of Sciences.

[73]  Mark F. Bear,et al.  The BCM theory of synapse modification at 30: interaction of theory with experiment , 2012, Nature Reviews Neuroscience.

[74]  Rahul Mishra,et al.  Oxygen-Migration-Based Spintronic Device Emulating a Biological Synapse , 2019, Physical Review Applied.

[75]  Ping Yu,et al.  Ion current rectification: from nanoscale to microscale , 2019, Science China Chemistry.

[76]  C. Gamrat,et al.  An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse , 2009, 0907.2540.

[77]  T. Bliss Long-lasting potentiation of synaptic transmission , 2005 .

[78]  Shimeng Yu,et al.  Nanoscale Bipolar and Complementary Resistive Switching Memory Based on Amorphous Carbon , 2011, IEEE Transactions on Electron Devices.

[79]  R. A. Souza Oxygen Diffusion in SrTiO3 and Related Perovskite Oxides , 2015 .

[80]  Rukshan T. Perera,et al.  Effect of the electric double layer on the activation energy of ion transport in conical nanopores , 2015 .

[81]  R. Eisenberg,et al.  Nanoprecipitation-assisted ion current oscillations. , 2008, Nature nanotechnology.

[82]  Lei Jiang,et al.  Light- and Electric-Field-Controlled Wetting Behavior in Nanochannels for Regulating Nanoconfined Mass Transport. , 2018, Journal of the American Chemical Society.

[83]  Masaaki Tanaka,et al.  Memristive magnetic tunnel junctions with MnAs nanoparticles , 2015 .

[84]  Shaurya Prakash,et al.  Field effect nanofluidics. , 2016, Lab on a chip.

[85]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[86]  Nam-Gyu Park,et al.  Perovskite-related (CH3NH3)3Sb2Br9 for forming-free memristor and low-energy-consuming neuromorphic computing. , 2019, Nanoscale.

[87]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[88]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[89]  Ping Yu,et al.  Chaotropic Monovalent Anion-Induced Rectification Inversion at Nanopipettes Modified by Polyimidazolium Brushes. , 2018, Angewandte Chemie.

[90]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[91]  Arindam Basu,et al.  Synergistic Gating of Electro‐Iono‐Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity , 2018, Advanced materials.

[92]  Wen-Jie Lan,et al.  Pressure-dependent ion current rectification in conical-shaped glass nanopores. , 2011, Journal of the American Chemical Society.

[93]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[94]  Yeongjun Lee,et al.  Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics. , 2019, Accounts of chemical research.

[95]  Junliang Yang,et al.  Multi-gate organic neuron transistors for spatiotemporal information processing , 2017 .

[96]  Lydéric Bocquet,et al.  Nanofluidics coming of age , 2020, Nature Materials.

[97]  Sang Moon Kim,et al.  Vertically Aligned WS2 Layers for High‐Performing Memristors and Artificial Synapses , 2019, Advanced Electronic Materials.

[98]  J. Yang,et al.  Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension , 2018, Nature Nanotechnology.

[99]  L. Bocquet,et al.  Dramatic pressure-sensitive ion conduction in conical nanopores , 2018, Proceedings of the National Academy of Sciences.

[100]  Z. Suo,et al.  Hydrogel ionotronics , 2018, Nature Reviews Materials.

[101]  Meng He,et al.  Artificial Synapses Emulated by an Electrolyte‐Gated Tungsten‐Oxide Transistor , 2018, Advanced materials.

[102]  Ping Yu,et al.  Micrometer-Scale Ion Current Rectification at Polyelectrolyte Brush-Modified Micropipets. , 2017, Journal of the American Chemical Society.

[103]  Jia Sun,et al.  Spatially-correlated neuron transistors with ion-gel gating for brain-inspired applications , 2017 .

[104]  Yu Chen,et al.  Polymer memristor for information storage and neuromorphic applications , 2014 .

[105]  Anatol C. Kreitzer,et al.  Interplay between Facilitation, Depression, and Residual Calcium at Three Presynaptic Terminals , 2000, The Journal of Neuroscience.

[106]  Wuhong Xue,et al.  Synaptic plasticity and learning behaviours in flexible artificial synapse based on polymer/viologen system , 2016 .

[107]  J. Yang,et al.  Memristive crossbar arrays for brain-inspired computing , 2019, Nature Materials.

[108]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[109]  F. Zhuge,et al.  Ultrasensitive Memristive Synapses Based on Lightly Oxidized Sulfide Films , 2017, Advanced materials.

[110]  L. Cooper,et al.  A physiological basis for a theory of synapse modification. , 1987, Science.

[111]  Yongli He,et al.  Electric-double-layer transistors for synaptic devices and neuromorphic systems , 2018 .

[112]  L C Katz,et al.  Neurotrophins and synaptic plasticity. , 1999, Annual review of neuroscience.

[113]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[114]  Yang Liu,et al.  Highly Selective Cerebral ATP Assay Based on Micrometer Scale Ion Current Rectification at Polyimidazolium-Modified Micropipettes. , 2017, Analytical chemistry.

[115]  M. Berggren,et al.  An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications , 2019, Advanced science.

[116]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.