Pseudoprimality related to the generalized Lucas sequences
暂无分享,去创建一个
[1] P. Ribenboim. The Little Book of Bigger Primes , 2004 .
[2] J. H. Jaroma. Note on the Lucas-Lehmer Test , 2004, Irish Mathematical Society Bulletin.
[3] A. Rotkiewicz. LUCAS AND FROBENIUS PSEUDOPRIMES , 2003 .
[4] C. Pomerance,et al. Prime Numbers: A Computational Perspective , 2002 .
[5] D. H. Lehmer,et al. New primality criteria and factorizations of 2^{}±1 , 1975 .
[6] Robert Baillie,et al. Lucas Pseudoprimes , 2002 .
[7] Dorin Andrica,et al. On Some New Arithmetic Properties of the Generalized Lucas Sequences , 2021, Mediterranean Journal of Mathematics.
[8] S. Paul. ON THE INFINITUDE OF LUCAS PSEUDOPRIMES , 1994 .
[9] H. C. Williams,et al. Édouard Lucas and primality testing , 1999 .
[10] Elias M. Stein,et al. Models of degenerate Fourier integral operators and Radon transforms , 1994 .
[11] C. Pomerance,et al. There are infinitely many Carmichael numbers , 1994 .
[12] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[13] Jon Grantham,et al. Frobenius pseudoprimes , 2001, Math. Comput..
[14] A. F. Horadam,et al. ON LUCAS PSEUDOPRIMES WHICH ARE PRODUCTS OF S PRIMES , 2007 .
[15] F. Al-Thukair,et al. On Fibonacci and Lucas sequences modulo a prime and primality testing , 2018 .
[16] Thomas Koshy,et al. Fibonacci and Lucas Numbers With Applications , 2018 .
[17] S. Schuster,et al. Use of Fibonacci numbers in lipidomics – Enumerating various classes of fatty acids , 2017, Scientific Reports.
[18] Eric L. Roettger,et al. A search for Fibonacci-Wieferich and Wolstenholme primes , 2007, Math. Comput..
[19] Karl Dilcher,et al. A search for Wieferich and Wilson primes , 1997, Math. Comput..
[20] Jon Grantham. There are infinitely many Perrin pseudoprimes , 2010, 1903.06825.
[21] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[22] T. Andreescu,et al. Number Theory: Structures, Examples, and Problems , 2009 .