On the kernel selection for minimum-entropy estimation
暂无分享,去创建一个
[1] Gilles Fleury,et al. Model selection via worst-case criterion for nonlinear bounded-error estimation , 1999, IMTC/99. Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (Cat. No.99CH36309).
[2] G. Terrell. The Maximal Smoothing Principle in Density Estimation , 1990 .
[3] Gilles Fleury,et al. Bootstrap methods applied to indirect measurement , 2001 .
[4] Luc Pronzato,et al. A minimum-entropy estimator for regression problems with unknown distribution of observation errors , 2001 .
[5] Adam Krzyzak,et al. On the Hilbert kernel density estimate , 1999 .
[6] G. Fleury,et al. Probability distribution in nonlinear estimation-a measurement dedicated approach , 1998, Ninth IEEE Signal Processing Workshop on Statistical Signal and Array Processing (Cat. No.98TH8381).
[7] L. Devroye. The double kernel method in density estimation , 1989 .
[8] Elias Masry,et al. Probability density estimation from sampled data , 1983, IEEE Trans. Inf. Theory.
[9] L. Devroye. A Note on the Usefulness of Superkernels in Density Estimation , 1992 .
[10] M. C. Jones,et al. Universal smoothing factor selection in density estimation: theory and practice , 1997 .
[11] D. W. Scott,et al. Oversmoothed Nonparametric Density Estimates , 1985 .
[12] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.