Error Structure and Atmospheric Temperature Trends in Observations from the Microwave Sounding Unit

Abstract The Microwave Sounding Unit (MSU) onboard the National Oceanic and Atmospheric Administration polar-orbiting satellites measures the atmospheric temperature from the surface to the lower stratosphere under all weather conditions, excluding precipitation. Although designed primarily for monitoring weather processes, the MSU observations have been extensively used for detecting climate trends, and calibration errors are a major source of uncertainty. To reduce this uncertainty, an intercalibration method based on the simultaneous nadir overpass (SNO) matchups for the MSU instruments on satellites NOAA-10, -11, -12, and -14 was developed. Due to orbital geometry, the SNO matchups are confined to the polar regions, where the brightness temperature range is slightly smaller than the global range. Nevertheless, the resulting calibration coefficients are applied globally to the entire life cycle of an MSU satellite. Such intercalibration reduces intersatellite biases by an order of magnitude compared to...

[1]  N. Grody,et al.  Global Warming Trend of Mean Tropospheric Temperature Observed by Satellites , 2003, Science.

[2]  John R. Christy,et al.  Analysis of the Merging Procedure for the MSU Daily Temperature Time Series , 1998 .

[3]  Frank J. Wentz,et al.  Effects of orbital decay on satellite-derived lower-tropospheric temperature trends , 1998, Nature.

[4]  S. Hassol,et al.  Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences , 2006 .

[5]  C. Prabhakara,et al.  NOTES AND CORRESPONDENCE Comments on ''Analysis of the Merging Procedure for the MSU Daily Temperature Time Series'' , 1999 .

[6]  James W. Hurrell,et al.  Difficulties in Obtaining Reliable Temperature Trends: Reconciling the Surface and Satellite Microwave Sounding Unit Records. , 1998 .

[7]  Estimation of Tropospheric Temperature Trends from MSU Channels 2 and 4 , 2006 .

[8]  John R. Christy,et al.  MSU Tropospheric Temperatures: Dataset Construction and Radiosonde Comparisons , 2000 .

[9]  Mitchell D. Goldberg,et al.  Calibration of multisatellite observations for climatic studies: Microwave Sounding Unit (MSU) , 2004 .

[10]  C. Prabhakara,et al.  Global warming: Evidence from satellite observations , 2000 .

[11]  W. Collins,et al.  Amplification of Surface Temperature Trends and Variability in the Tropical Atmosphere , 2005, Science.

[12]  Qiang Fu,et al.  Contribution of stratospheric cooling to satellite-inferred tropospheric temperature trends , 2004, Nature.

[13]  Changyong Cao,et al.  Predicting Simultaneous Nadir Overpasses among Polar-Orbiting Meteorological Satellites for the Intersatellite Calibration of Radiometers , 2004 .

[14]  Q. Fu,et al.  Satellite‐derived vertical dependence of tropical tropospheric temperature trends , 2005 .

[15]  J. Christy,et al.  How accurate are satellite ‘thermometers’? , 1997, Nature.

[16]  Benjamin M. Herman,et al.  Using limited time period trends as a means to determine attribution of discrepancies in microwave sounding unit–derived tropospheric temperature time series , 2008 .

[17]  Roy W. Spencer,et al.  Precision and radiosonde validation of satellite gridpoint temperature anomalies , 1992 .

[18]  J. Kennedy,et al.  Improved Analyses of Changes and Uncertainties in Sea Surface Temperature Measured In Situ since the Mid-Nineteenth Century: The HadSST2 Dataset , 2006 .

[19]  Changyong Cao,et al.  Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses , 2006 .

[20]  David K. Walker,et al.  Nonlinear modeling of tunnel diode detectors , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[21]  Stefano Schiavon,et al.  Climate Change 2007: The Physical Science Basis. , 2007 .

[22]  Celeste M. Johanson Robustness of tropospheric temperature trends from MSU channel 2 and 4 , 2006 .

[23]  William L. Smith,et al.  NIMBUS-5 sounder data processing system, part I : measurement characteristics and data reduction procedures , 1974 .

[24]  M. Goldberg,et al.  An Algorithm to Generate Deep-Layer Temperatures from Microwave Satellite Observations for the Purpose of Monitoring Climate Change , 1995 .

[25]  J. Christy,et al.  Precision and Radiosonde Validation of Satellite Gridpoint Temperature Anomalies. Part I; MSU Channel 2. Pt. 1; MSU Channel 2 , 1992 .

[26]  K. Trenberth,et al.  Spurious trends in satellite MSU temperatures from merging different satellite records , 1997, Nature.

[27]  Mitchell D. Goldberg,et al.  The Limb Adjustment of AMSU-A Observations: Methodology and Validation , 2001 .

[28]  Q. Fu,et al.  Stratospheric Influences on MSU-Derived Tropospheric Temperature Trends: A Direct Error Analysis. , 2004 .

[29]  Josefino C. Comiso,et al.  Accelerated decline in the Arctic sea ice cover , 2008 .

[30]  Matthias C. Schabel,et al.  A Reanalysis of the MSU Channel 2 Tropospheric Temperature Record , 2003 .

[31]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[32]  Peter H. Stone,et al.  Atmospheric Lapse Rate Regimes and Their Parameterization , 1979 .

[33]  John R. Christy,et al.  Error Estimates of Version 5.0 of MSU–AMSU Bulk Atmospheric Temperatures , 2003 .

[34]  Tsan Mo A study of the microwave sounding unit on the NOAA-12 satellite , 1995, IEEE Trans. Geosci. Remote. Sens..

[35]  Mitchell D. Goldberg,et al.  Temperature trends at the surface and in the troposphere , 2006 .

[36]  Mitchell D. Goldberg,et al.  Recalibration of the NOAA microwave sounding unit , 2001 .

[37]  F. Wentz,et al.  The Effect of Diurnal Correction on Satellite-Derived Lower Tropospheric Temperature , 2005, Science.