Augmenting adaptive output feedback control of uncertain nonlinear systems with actuator nonlinearities

We address systematic design of a linear compensator to enhance the performance of an adaptive output feedback control with actuator nonlinearities. The adaptive output feedback controller augments a baseline linear controller. The basic approach involves showing that the augmenting adaptive output feedback architecture is structurally equivalent to a robust internal-loop compensator. The approach addresses a broad class of actuator nonlinearities, and is applicable to non-affine, nonlinear system containing both parametric uncertainty and unmodelled dynamics. We illustrate the main results using a three-disk torsional system, in which the actuator is subject to dead zone and saturation.

[1]  Anthony J. Calise,et al.  Adaptive output feedback control with input saturation , 2003, Proceedings of the 2003 American Control Conference, 2003..

[2]  Anthony J. Calise,et al.  Adaptive output feedback control of nonlinear systems using neural networks , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[3]  Alexander Leonessa,et al.  Adaptive tracking for nonlinear systems with control constraints , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[4]  Nakwan Kim Improved Methods in Neural Network-Based Adaptive Output Feedback Control, with Applications to Flight Control , 2003 .

[5]  Eric N. Johnson,et al.  Limited authority adaptive flight control for reusable launch vehicles , 2003 .

[6]  Gang Tao,et al.  Adaptive Control of Systems with Actuator and Sensor Nonlinearities , 1996 .

[7]  Gang Tao,et al.  Control of sandwich nonlinear systems , 2003 .

[8]  Anthony J. Calise,et al.  Adaptive output feedback control of uncertain nonlinear systems using single-hidden-layer neural networks , 2002, IEEE Trans. Neural Networks.

[9]  Anthony J. Calise,et al.  Augmenting Adaptive Approach to Control of Flexible Systems , 2002 .

[10]  Robert Bartle,et al.  The Elements of Real Analysis , 1977, The Mathematical Gazette.

[11]  Marios M. Polycarpou,et al.  On-line approximation control of uncertain nonlinear systems: issues with control input saturation , 2003, Proceedings of the 2003 American Control Conference, 2003..

[12]  S. M. Shahruz,et al.  Performance enhancement of a class of nonlinear systems by disturbance observers , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[13]  Frank L. Lewis,et al.  Deadzone compensation in motion control systems using neural networks , 2000, IEEE Trans. Autom. Control..

[14]  Wan Kyun Chung,et al.  Performance tuning of robust motion controllers for high-accuracy positioning systems , 2002 .

[15]  Anthony J. Calise,et al.  Augmentation of an existing linear controller with an adaptive element , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[16]  Tao Zhang,et al.  Stable Adaptive Neural Network Control , 2001, The Springer International Series on Asian Studies in Computer and Information Science.

[17]  Anthony J. Calise,et al.  Upper bounds for approximation of continuous-time dynamics using delayed outputs and feedforward neural networks , 2003, IEEE Trans. Autom. Control..

[18]  Masayoshi Tomizuka,et al.  A sensitivity optimization approach to design of a disturbance observer in digital motion control systems , 2000 .

[19]  Anthony J. Calise,et al.  Adaptive Output Feedback Control of Uncertain Systems using Single Hidden Layer Neural Networks , 2001 .

[20]  Yoichi Hori,et al.  Robust servosystem design with two degrees of freedom and its application to novel motion control of robot manipulators , 1993, IEEE Trans. Ind. Electron..

[21]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[22]  Anthony J. Calise,et al.  Adaptive output feedback control of nonlinear systems using neural networks , 2001, Autom..