Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors

Abstract We report on the fabrication, the morphological, structural, and chemical characterization, and the study of the electrical response to NO 2 and other gases of resistive type gas sensors based on liquid chemically exfoliated (in N-methyl pyrrolidone, NMP) MoS 2 flakes annealed in air either at 150 °C or at 250 °C. The active material has been analyzed by scanning electron microscopy (SEM), and micro Raman and X-ray core level photoemission spectroscopies. SEM shows that MoS 2 exfoliated flakes are interconnected between electrodes of the sensing device to form percolation paths. Raman spectroscopy of the flakes before annealing demonstrates that the flakes are constituted by crystalline MoS 2 , while, annealing at 250 °C, does not introduce a detectable bulk contamination in the expected form of MoO 3 . The sensor obtained by thermal annealing in air at 150 °C exhibits a peculiar p -type response under exposure to NO 2 . In line with core level spectroscopy evidences, this behavior is potentially ascribed to nitrogen substitutional doping of S vacancies in the MoS 2 surface (nitrogen atoms being likely provided by the intercalated NMP). Thermal annealing the MoS 2 flakes in air at 250 °C irreversibly sets an n -type behavior of the gas sensing device, with a NO 2 detection limit of 20 ppb. This behavior is assigned, in line with core level spectroscopy data, to a significant presence of S vacancies in the MoS 2 annealed flakes and to the surface co-existence of MoO 3 arising from the partial oxidation of the flakes surface. Both p- and n -type sensors have been demonstrated to be sensitive also to relative humidity. The n -type sensor shows good electrical response under H 2 exposure.

[1]  Udo Weimar,et al.  Water–oxygen interplay on tin dioxide surface: Implication on gas sensing , 2005 .

[2]  A. Tanaka,et al.  Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[3]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[4]  Harold S. Park,et al.  MoS2 nanoresonators: intrinsically better than graphene? , 2014, Nanoscale.

[5]  David-Wei Zhang,et al.  The physics and backward diode behavior of heavily doped single layer MoS2 based p-n junctions , 2013 .

[6]  J. Alfonso,et al.  Optical characterization of MoO3 thin films produced by continuous wave CO2 laser-assisted evaporation , 2005 .

[7]  H. Choi,et al.  Controlled exfoliation of molybdenum disulfide for developing thin film humidity sensor , 2014 .

[8]  S. R. Morrison,et al.  The Chemical Physics of Surfaces , 1977 .

[9]  Jose Maria Kenny,et al.  NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition , 2003 .

[10]  Wojtek Wlodarski,et al.  Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors , 2002 .

[11]  P. P. Hankare,et al.  MoS2: Preparation and their characterization , 2009 .

[12]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[13]  Lars Hultman,et al.  Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection , 2011 .

[14]  B. Lee,et al.  Enhancing Photocatalytic Activity of Polymorphic Titania Nanoparticles by NMP Solvent-based Ambient Condition Process , 2008 .

[15]  S. Sanvito,et al.  Possible doping strategies for MoS 2 monolayers: An ab initio study , 2013 .

[16]  H. Hughes,et al.  Kramers-Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2 , 1979 .

[17]  Udo Weimar,et al.  Influence of humidity on CO sensing with p-type CuO thick film gas sensors , 2011 .

[18]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[19]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[20]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[21]  Filip Braet,et al.  Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. , 2010, Environmental science & technology.

[22]  Kangho Lee,et al.  High‐Performance Sensors Based on Molybdenum Disulfide Thin Films , 2013, Advanced materials.

[23]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[24]  M. Madou,et al.  Chemical Sensing With Solid State Devices , 1989 .

[25]  Xiaogan Liang,et al.  MoS2 transistors fabricated via plasma-assisted nanoprinting of few-layer MoS2 flakes into large-area arrays. , 2013, ACS nano.

[26]  E. Kaxiras,et al.  Selective thermal reduction of single-layer MoO3 nanostructures on Au(111) , 2007 .

[27]  Zhifu Liu,et al.  Room temperature gas sensing of p-type TeO2 nanowires , 2007 .

[28]  C. Hogarth,et al.  Effect of film thickness and substrate deposition temperature on the a.c. electrical properties of molybdenum trioxide , 1989 .

[29]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[30]  L. Ottaviano,et al.  Tunable sulfur desorption in exfoliated MoS2 by means of thermal annealing in ultra-high vacuum , 2013 .

[31]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[32]  Xun Wang,et al.  Single-walled MoO3 nanotubes. , 2008, Journal of the American Chemical Society.

[33]  Mustafa Lotya,et al.  Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersability of Exfoliated Nanosheets Varies Only Weakly between Compounds /v Sol (mol/ml) Characterisation of Dispersions , 2022 .

[34]  Bret C. Windom,et al.  A Raman Spectroscopic Study of MoS2 and MoO3: Applications to Tribological Systems , 2011 .

[35]  A. J. Grant,et al.  The electrical properties and the magnitude of the indirect gap in the semiconducting transition metal dichalcogenide layer crystals , 1975 .

[36]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[37]  S. Santucci,et al.  Graphene Oxide as a Practical Solution to High Sensitivity Gas Sensing , 2013 .

[38]  N. Miyata,et al.  Preparation and electrochromic properties of rf‐sputtered molybdenum oxide films , 1985 .

[39]  M. Shiojiri,et al.  Stacking faults in hexagonal and rhombohedral MoS2 crystals produced by mechanical operation in relation to lubrication , 1993 .

[40]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[41]  B. Farag,et al.  Transport properties of molybdenum trioxide and its suboxides , 1982 .

[42]  S. K. Srivastava,et al.  Preparation and characterization of molybdenum disulphide catalysts , 1993, Journal of Materials Science.

[43]  G. Korotcenkov,et al.  Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) , 2011 .

[44]  Simon Kurasch,et al.  Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. , 2012, Physical review letters.

[45]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[46]  T. Letcher,et al.  (Solid + liquid) equilibria and solid compound formation in (N-methyl-2-pyrrolidinone + benzene, or toluene, or 1,3,5-trimethylbenzene, or ethylbenzene, or chlorobenzene, or 1,2-dichlorobenzene, or 1,2,4-trichlorobenzene, or 1,1,1-trichloroethane, or dichloromethane) , 2000 .

[47]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[48]  Anupama B. Kaul,et al.  Two-dimensional layered materials: Structure, properties, and prospects for device applications , 2014 .

[49]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[50]  Stefano Sanvito,et al.  Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate , 2013, 1301.2491.

[51]  Seung-Ho Jung,et al.  High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation , 2009 .

[52]  T. Barr An ESCA study of the termination of the passivation of elemental metals , 1978 .

[53]  S. Choopun,et al.  Raman scattering and electrical conductivity of nitrogen implanted MoO3 whiskers , 2008 .

[54]  N. Bârsan,et al.  Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors , 2010 .

[55]  Matteo Ferroni,et al.  Thin-film gas sensor implemented on a low-power-consumption micromachined silicon structure , 1998 .

[56]  Z. Yin,et al.  Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. , 2013, Small.

[57]  Kangho Lee,et al.  Controlled synthesis of transition metal dichalcogenide thin films for electronic applications , 2014 .

[58]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[59]  Daqiang Zhang,et al.  A Survey on Gas Sensing Technology , 2012, Sensors.

[60]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Qin,et al.  Functionalization of monolayer MoS2 by substitutional doping: A first-principles study , 2013 .

[62]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[63]  H. Chae,et al.  Graphene oxide/N-methyl-2-pyrrolidone charge-transfer complexes for molecular detection , 2013 .

[64]  R. Schlögl,et al.  Properties of oxygen sites at the MoO_3(010) surface: density functional theory cluster studies and photoemission experiments , 2001 .

[65]  M. Kleinman,et al.  The use of N-methylpyrrolidone as a cosolvent and oxidant in pharmaceutical stress testing. , 2012, Journal of pharmaceutical sciences.

[66]  D. Y. Kim,et al.  Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. , 2006, Nano letters.

[67]  M. Singh,et al.  Large-area high-throughput synthesis of monolayer graphene sheet by Hot Filament Thermal Chemical Vapor Deposition , 2012, Scientific Reports.

[68]  S. Lefrant,et al.  C60 Aggregates in Pyrrolidine and N-Methyl-2-Pyrrolidinone Evidenced by Surface-Enhanced Raman Scaterring Spectra , 2004 .

[69]  L. Thompson,et al.  XPS study of as-prepared and reduced molybdenum oxides , 1996 .

[70]  Luca Ottaviano,et al.  NO2 response to few-layers MoS2 , 2012 .

[71]  Photoemission studies of the surface electronic properties of L-CVD SnO2 ultra thin films , 2012 .

[72]  John Robertson,et al.  Sulfur vacancies in monolayer MoS2 and its electrical contacts , 2013 .