New Block Triangular Preconditioners for Saddle Point Linear Systems with Highly Singular (1,1) Blocks

We establish two types of block triangular preconditioners applied to the linear saddle point problems with the singular (1,1) block. These preconditioners are based on the results presented in the paper of Rees and Greif (2007). We study the spectral characteristics of the preconditioners and show that all eigenvalues of the preconditioned matrices are strongly clustered. The choice of the parameter is involved. Furthermore, we give the optimal parameter in practical. Finally, numerical experiments are also reported for illustrating the efficiency of the presented preconditioners.

[1]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[2]  Stephen G. Nash,et al.  Preconditioning Reduced Matrices , 1996, SIAM J. Matrix Anal. Appl..

[3]  Howard C. Elman,et al.  Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..

[4]  Stephen J. Wright Stability of Augmented System Factorizations in Interior-Point Methods , 1997, SIAM J. Matrix Anal. Appl..

[5]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[6]  A. Wathen,et al.  Minimum residual methods for augmented systems , 1998 .

[7]  H. Elman,et al.  Iterative Methods for Problems in Computational Fluid Dynamics , 1998 .

[8]  Changjun Li,et al.  A generalized successive overrelaxation method for least squares problems , 1998 .

[9]  Howard C. Elman,et al.  Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..

[10]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[11]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[12]  D. Schötzau,et al.  Preconditioners for saddle point linear systems with highly singular blocks. , 2006 .

[13]  Chen Greif,et al.  A Preconditioner for Linear Systems Arising From Interior Point Optimization Methods , 2007, SIAM J. Sci. Comput..

[14]  Chen Greif,et al.  Preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2007, Numer. Linear Algebra Appl..

[15]  Zhi-Hao Cao,et al.  Augmentation block preconditioners for saddle point‐type matrices with singular (1, 1) blocks , 2008, Numer. Linear Algebra Appl..