Multivariate AR Model Order Estimation with Unknown Process Order

A new method for simultaneous order estimation and parameter identification of a multivariate autoregressive (AR) model is described in this paper. The proposed method is based on the well known multimodel partitioning theory. Computer simulations indicate that the method is 100% successful in selecting the correct model order in very few steps. The results are compared with another two established order selection criteria the Akaike’s Final Prediction Error (FPE) and Schwarz’s Bayesian Criterion (BIC).

[1]  D.G. Lainiotis,et al.  Partitioning: A unifying framework for adaptive systems, II: Control , 1976, Proceedings of the IEEE.

[2]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[3]  Mati Wax Order selection for AR models by predictive least-squares , 1986, 1986 25th IEEE Conference on Decision and Control.

[4]  Jorma Rissanen,et al.  A Predictive Least-Squares Principle , 1986 .

[5]  H. Lütkepohl COMPARISON OF CRITERIA FOR ESTIMATING THE ORDER OF A VECTOR AUTOREGRESSIVE PROCESS , 1985 .

[6]  C.W. Anderson,et al.  Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks , 1998, IEEE Transactions on Biomedical Engineering.

[7]  Piet M. T. Broersen,et al.  Order selection for vector autoregressive models , 2003, IEEE Trans. Signal Process..

[8]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[9]  渡辺 桂吾,et al.  Adaptive estimation and control : partitioning approach , 1991 .

[10]  Demetrios G. Lainiotis,et al.  Adaptive deconvolution of seismic signals-performance, computational analysis, parallelism , 1988, IEEE Trans. Acoust. Speech Signal Process..

[11]  Spiridon D. Likothanassis,et al.  Adaptive on-line multiple source detection , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[12]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[13]  D. Lainiotis,et al.  Simplified parameter quantization procedure for adaptive estimation , 1969 .

[14]  Demetrios G. Lainiotis,et al.  A partitioned adaptive approach to nonlinear channel equalization , 1998, IEEE Trans. Commun..

[15]  Demetrios G. Lainiotis,et al.  Passive tracking of a maneuvering target: an adaptive approach , 1994, IEEE Trans. Signal Process..

[16]  Grigorios N. Beligiannis,et al.  Genetically determined variable structure multiple model estimation , 2001, IEEE Trans. Signal Process..

[17]  Guoqing Liu,et al.  Moving target feature extraction for airborne high-range resolution phased-array radar , 2001, IEEE Trans. Signal Process..

[18]  Arnold Neumaier,et al.  Estimation of parameters and eigenmodes of multivariate autoregressive models , 2001, TOMS.

[19]  B. Anderson,et al.  Multiple model adaptive control. Part 1: Finite controller coverings , 2000 .

[20]  D. Lainiotis,et al.  Partitioning: A unifying framework for adaptive systems, I: Estimation , 1976, Proceedings of the IEEE.

[21]  Demetrios G. Lainiotis,et al.  AR model identification with unknown process order , 1990, IEEE Trans. Acoust. Speech Signal Process..