Constraint propagation on quadratic constraints

This paper considers constraint propagation methods for continuous constraint satisfaction problems consisting of linear and quadratic constraints. All methods can be applied after suitable preprocessing to arbitrary algebraic constraints. The basic new techniques consist in eliminating bilinear entries from a quadratic constraint, and solving the resulting separable quadratic constraints by means of a sequence of univariate quadratic problems. Care is taken to ensure that all methods correctly account for rounding errors in the computations. Various tests and examples illustrate the advantage of the presented method.

[1]  Hermann Schichl,et al.  Interval Analysis on Directed Acyclic Graphs for Global Optimization , 2005, J. Glob. Optim..

[2]  Hermann Schichl,et al.  Using directed acyclic graphs to coordinate propagation and search for numerical constraint satisfaction problems , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[3]  Pascal Van Hentenryck A Gentle Introduction to NUMERICA , 1998, Artif. Intell..

[4]  Ferenc Domes,et al.  GLOPTLAB: a configurable framework for the rigorous global solution of quadratic constraint satisfaction problems , 2009, Optim. Methods Softw..

[5]  Weldon A. Lodwick,et al.  Constraint propagation, relational arithmetic in AI systems and mathematical programs , 1990 .

[6]  Frédéric Goualard,et al.  Revising Hull and Box Consistency , 1999, ICLP.

[7]  Narendra Jussien,et al.  The PaLM system: explanation-based constraint programming , 2000 .

[8]  Tamara Kashevarova,et al.  UniCalc, a Novel Approach to Solving Systems of Algebraic Equations , 1993 .

[9]  Erling D. Andersen,et al.  Presolving in linear programming , 1995, Math. Program..

[10]  Frédéric Goualard,et al.  Interval Constraints: Results and Perspectives , 1999, New Trends in Constraints.

[11]  Eric Walter,et al.  Guaranteed non-linear estimation using constraint propagation on sets , 2001 .

[12]  Arnold Neumaier,et al.  Verified global optimization with GloptLab , 2007 .

[13]  André Vellino,et al.  Constraint Arithmetic on Real Intervals , 1993, WCLP.

[14]  Yahia Lebbah,et al.  Interval Analysis, Constraint Propagation and Applications , 2007 .

[15]  R. B. Kearfott,et al.  Applications of interval computations , 1996 .

[16]  Luc Jaulin,et al.  Interval constraint propagation with application to bounded-error estimation , 2000, Autom..

[17]  Pascal Van Hentenryck,et al.  CLP(Intervals) Revisited , 1994, ILPS.

[18]  Hermann Schichl,et al.  Interval propagation and search on directed acyclic graphs for numerical constraint solving , 2009, J. Glob. Optim..

[19]  Frédéric Benhamou,et al.  Heterogeneous Constraint Solving , 1996, ALP.

[20]  G. William Walster,et al.  Sharp Bounds on Interval Polynomial Roots , 2002, Reliab. Comput..

[21]  R. Baker Kearfott,et al.  Decomposition of arithmetic expressions to improve the behavior of interval iteration for nonlinear systems , 1991, Computing.

[22]  Pedro Barahona,et al.  PSICO: Solving Protein Structures with Constraint Programming and Optimization , 2002, Constraints.

[23]  Tibor Csendes,et al.  Developments in Global Optimization , 1997 .

[24]  Krzysztof R. Apt,et al.  The Essence of Constraint Propagation , 1998, Theor. Comput. Sci..

[25]  Hermann Schichl,et al.  GLOPT { A Program for Constrained Global Optimization , 1997 .

[26]  Jean-Pierre Merlet,et al.  Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis , 2004, Int. J. Robotics Res..

[27]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[28]  Eero Hyvönen,et al.  Interval Computations on the Spreadsheet , 1996 .

[29]  Frédéric Benhamou,et al.  Applying Interval Arithmetic to Real, Integer, and Boolean Constraints , 1997, J. Log. Program..

[30]  Gregory D. Hager Solving Large Systems of Nonlinear Constraints with Application to Data Modeling , 1994 .

[31]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[32]  Pascal Van Hentenryck,et al.  Newton - Constraint Programming over Nonlinear Constraints , 1998, Sci. Comput. Program..

[33]  A. Neumaier Interval methods for systems of equations , 1990 .

[34]  N. Sahinidis,et al.  Convexification and Global Optimization in Continuous And , 2002 .

[35]  A. Neumaier Enclosing clusters of zeros of polynomials , 2003 .

[36]  Luc Jaulin Localization of an Underwater Robot Using Interval Constraint Propagation , 2006, CP.

[37]  Etienne Huens,et al.  Algorithms for Solving Non-Linear Constrained and Optimization Problems: The State of The Art , 2001 .

[38]  Martine Ceberio,et al.  Solving Nonlinear Systems by Constraint Inversion and Interval Arithmetic , 2000, AISC.

[39]  S. Dakota of Selected Research , 2001 .

[40]  Nikolaos V. Sahinidis,et al.  Exact Algorithms for Global Optimization of Mixed-Integer Nonlinear Programs , 2002 .

[41]  Frédéric Benhamou,et al.  Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques , 2006, TOMS.

[42]  David Daney,et al.  Combining CP and Interval Methods for solving the Direct Kinematic of a Parallel Robot under Uncertainties , 2006 .

[43]  M. H. van Emden Computing Functional and Relational Box Consistency by Structured Propagation in Atomic Constraint Systems , 2001, ArXiv.

[44]  Yahia Lebbah,et al.  A Rigorous Global Filtering Algorithm for Quadratic Constraints* , 2004, Constraints.

[45]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[46]  Pedro Barahona,et al.  Constraint reasoning in deep biomedical models , 2005, Artif. Intell. Medicine.

[47]  Pascal Van Hentenryck,et al.  Numerica: A Modeling Language for Global Optimization , 1997, IJCAI.