Adaptation of Preissmann's scheme for transcritical open channel flows
暂无分享,去创建一个
Vincent Guinot | Pierre-Olivier Malaterre | Jean-Pierre Baume | Caroline Sart | V. Guinot | P. Malaterre | J. Baume | Caroline Sart
[1] Stephen Roberts,et al. Explicit schemes for dam-break simulations , 2003 .
[2] F. Holly,et al. INVALIDITY OF PREISSMANN SCHEME FOR TRANSCRITICAL FLOW , 1997 .
[3] Vedrana Kutija. On the numerical modelling of supercritical flow , 1993 .
[4] A. Bressan. Hyperbolic Systems of Conservation Laws , 1999 .
[5] André Paquier,et al. Experimental and numerical modelling of symmetrical four-branch supercritical cross junction flow , 2008 .
[6] M. J. Baines,et al. A box scheme for transcritical flow , 2002 .
[7] Arturo S. Leon,et al. Application of Godunov-type schemes to transient mixed flows , 2009 .
[8] Vincent Guinot,et al. Godunov-type Schemes: An Introduction for Engineers , 2003 .
[9] Vincent Guinot,et al. An outline of Godunov-type schemes , 2003 .
[10] Godfrey A. Walters,et al. SIMULATION OF TRANSCRITICAL FLOW IN PIPE/CHANNEL NETWORKS , 2004 .
[11] P. García-Navarro,et al. Godunov-type methods for free-surface shallow flows: A review , 2007 .
[12] Pilar García-Navarro,et al. Implicit schemes with large time step for non‐linear equations: application to river flow hydraulics , 2004 .
[13] A. I. Delis,et al. Improved application of the HLLE Riemann solver for the shallow water equations with source terms , 2002 .
[14] G. Tadmor,et al. Non-oscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1997 .
[15] P. Lax. Hyperbolic systems of conservation laws , 2006 .
[16] Sam S. Y. Wang,et al. Improved implementation of the HLL approximate Riemann solver for one-dimensional open channel flows , 2008 .
[17] Eitan Tadmor,et al. Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..
[18] Eleuterio F. Toro,et al. Centred TVD schemes for hyperbolic conservation laws , 2000 .
[19] F. Alcrudo. A state of the art review on mathematical modelling of flood propagation , 2002 .
[20] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[21] B. Vanleer,et al. On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .
[22] Eitan Tadmor,et al. Hyperbolic Problems: Theory, Numerics and Applications , 2009 .
[23] Gilles Belaud,et al. CAPÍTULO 1 SIC : A 1 D HYDRODYNAMIC MODEL FOR RIVER AND IRRIGATION CANAL MODELING AND REGULATION , 2005 .
[24] K. W. Morton,et al. Upwind iteration methods for the cell vertex scheme in one dimension , 1994 .
[25] J. Cunge,et al. Practical aspects of computational river hydraulics , 1980 .