A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI

Within-subject analysis in fMRI essentially addresses two problems, i.e., the detection of activated brain regions in response to an experimental task and the estimation of the underlying dynamics, also known as the characterisation of Hemodynamic response function (HRF). So far, both issues have been treated sequentially while it is known that the HRF model has a dramatic impact on the localisation of activations and that the HRF shape may vary from one region to another. In this paper, we conciliate both issues in a region-based joint detection-estimation framework that we develop in the Bayesian formalism. Instead of considering function basis to account for spatial variability, spatially adaptive General Linear Models are built upon region-based non-parametric estimation of brain dynamics. Regions are first identified as functionally homogeneous parcels in the mask of the grey matter using a specific procedure [Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., Poline, J.-B., August 2006. Dealing with the shortcomings of spatial normalization: Multi-subject parcellation of fMRI datasets. Hum. Brain Mapp. 27 (8), 678-693.]. Then, in each parcel, prior information is embedded to constrain this estimation. Detection is achieved by modelling activating, deactivating and non-activating voxels through mixture models within each parcel. From the posterior distribution, we infer upon the model parameters using Markov Chain Monte Carlo (MCMC) techniques. Bayesian model comparison allows us to emphasize on artificial datasets first that inhomogeneous gamma-Gaussian mixture models outperform Gaussian mixtures in terms of sensitivity/specificity trade-off and second that it is worthwhile modelling serial correlation through an AR(1) noise process at low signal-to-noise (SNR) ratio. Our approach is then validated on an fMRI experiment that studies habituation to auditory sentence repetition. This phenomenon is clearly recovered as well as the hierarchical temporal organisation of the superior temporal sulcus, which is directly derived from the parcel-based HRF estimates.

[1]  Gabriele Lohmann,et al.  Bayesian second-level analysis of functional magnetic resonance images , 2003, NeuroImage.

[2]  C. Dainty High-resolution imaging , 1996 .

[3]  B. Everitt,et al.  Mixture model mapping of brain activation in functional magnetic resonance images , 1999, Human brain mapping.

[4]  C. Robert Simulation of truncated normal variables , 2009, 0907.4010.

[5]  Mark W. Woolrich,et al.  Fully Bayesian spatio-temporal modeling of FMRI data , 2004, IEEE Transactions on Medical Imaging.

[6]  D. Brie,et al.  Separation of Non-Negative Mixture of Non-Negative Sources Using a Bayesian Approach and MCMC Sampling , 2006, IEEE Transactions on Signal Processing.

[7]  Jérôme Idier,et al.  Spatial Mixture Modelling for the Joint Detection-Estimation of Brain Activity in fMRI , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[8]  Thomas Veit,et al.  Rééchantillonnage de l'échelle dans les algorithmes MCMC pour les problèmes inverses bilinéaires , 2008 .

[9]  Satrajit S. Ghosh,et al.  Region of interest based analysis of functional imaging data , 2003, NeuroImage.

[10]  Jean-Baptiste Poline,et al.  Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment , 2003, IEEE Transactions on Medical Imaging.

[11]  William D. Penny,et al.  Variational Bayes for generalized autoregressive models , 2002, IEEE Trans. Signal Process..

[12]  Jean-Baptiste Poline,et al.  Dealing with the shortcomings of spatial normalization: Multi‐subject parcellation of fMRI datasets , 2006, Human brain mapping.

[13]  D. Brie,et al.  Simulation of postive normal variables using several proposal distributions , 2005, IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

[14]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[15]  Lars Kai Hansen,et al.  Modeling the hemodynamic response in fMRI using smooth FIR filters , 2000, IEEE Transactions on Medical Imaging.

[16]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Christopher R. Genovese,et al.  A Bayesian Time-Course Model for Functional Magnetic Resonance Imaging Data , 2000 .

[18]  William H. Press,et al.  Numerical recipes in C , 2002 .

[19]  R. Thatcher Functional neuroimaging : technical foundations , 1994 .

[20]  Benjamin Thyreau,et al.  Anatomo-Functional Description of the Brain : A Probabilistic Approach , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[21]  S. Dehaene,et al.  Unconscious semantic priming extends to novel unseen stimuli , 2001, Cognition.

[22]  Karl J. Friston,et al.  Mixtures of general linear models for functional neuroimaging , 2003, IEEE Transactions on Medical Imaging.

[23]  Wojciech Pieczynski,et al.  Unsupervised Statistical Segmentation of Nonstationary Images Using Triplet Markov Fields , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Nicholas Ayache,et al.  Improved Detection Sensitivity in Functional MRI Data Using a Brain Parcelling Technique , 2002, MICCAI.

[25]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[26]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[27]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[28]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[29]  A. P. Dawid,et al.  Bayesian Statistics 8 , 2007 .

[30]  Polina Golland,et al.  From Spatial Regularization to Anatomical Priors in fMRI Analysis , 2005, IPMI.

[31]  K. Grill-Spector,et al.  High-resolution imaging reveals highly selective nonface clusters in the fusiform face area , 2006, Nature Neuroscience.

[32]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[33]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[34]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[35]  Jean-Baptiste Poline,et al.  Joint detection-estimation of brain activity in fMRI using an autoregressive noise model , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[36]  Jean Gotman,et al.  EEG–fMRI of epileptic spikes: Concordance with EEG source localization and intracranial EEG , 2006, NeuroImage.

[37]  Jean Gotman,et al.  Anatomically informed interpolation of fMRI data on the cortical surface , 2006, NeuroImage.

[38]  Karl J. Friston Imaging neuroscience: principles or maps? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Guillaume P. Dehaene,et al.  Functional segregation of cortical language areas by sentence repetition , 2006, Human brain mapping.

[40]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[41]  R. Turner,et al.  Detecting Latency Differences in Event-Related BOLD Responses: Application to Words versus Nonwords and Initial versus Repeated Face Presentations , 2002, NeuroImage.

[42]  Adrian F. M. Smith,et al.  Bayesian Analysis of Constrained Parameter and Truncated Data Problems , 1991 .

[43]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[44]  Jean-Francois Mangin,et al.  Structural Analysis of fMRI Data Revisited: Improving the Sensitivity and Reliability of fMRI Group Studies , 2007, IEEE Transactions on Medical Imaging.

[45]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[46]  Ludwig Fahrmeir,et al.  Assessing brain activity through spatial bayesian variable selection , 2003, NeuroImage.

[47]  M. Newton,et al.  Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .

[48]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[49]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[50]  Markus Svensén,et al.  Probabilistic modeling of single-trial fMRI data , 2000, IEEE Transactions on Medical Imaging.

[51]  David Gavaghan,et al.  Development of a functional magnetic resonance imaging simulator for modeling realistic rigid‐body motion artifacts , 2006, Magnetic resonance in medicine.

[52]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[53]  D Le Bihan,et al.  Detection of fMRI activation using Cortical Surface Mapping , 2001, Human brain mapping.

[54]  J B Poline,et al.  Joint detection-estimation of brain activity in functional MRI: a Multichannel Deconvolution solution , 2005, IEEE Transactions on Signal Processing.

[55]  Mark W. Woolrich,et al.  Constrained linear basis sets for HRF modelling using Variational Bayes , 2004, NeuroImage.

[56]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[57]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[58]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[59]  Stuart Geman,et al.  Statistical methods for tomographic image reconstruction , 1987 .

[60]  Jean-Baptiste Poline,et al.  Bayesian Joint Detection-Estimation of Brain Activity Using MCMC With a Gamma-Gaussian Mixture Prior Model , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[61]  Jean Gotman,et al.  Analysis of the EEG–fMRI response to prolonged bursts of interictal epileptiform activity , 2005, NeuroImage.

[62]  Thomas Vincent,et al.  Application du rééchantillonnage stochastique de l'échelle en détection-estimation de l'activité cérébrale par IRMf , 2007 .

[63]  M. D’Esposito,et al.  The variability of human BOLD hemodynamic responses , 1998, NeuroImage.

[64]  Mark W. Woolrich,et al.  Variational bayes inference of spatial mixture models for segmentation , 2006, IEEE Transactions on Medical Imaging.

[65]  Bruce R. Rosen,et al.  Comparison of two convolution models for fMRI time series , 1997 .

[66]  Bernie Mulgrew,et al.  IEEE Workshop on Statistical Signal Processing , 2005 .

[67]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[68]  H. Benali,et al.  Robust Bayesian estimation of the hemodynamic response function in event‐related BOLD fMRI using basic physiological information , 2003, Human brain mapping.

[69]  F Kruggel,et al.  Modeling the hemodynamic response in single‐trial functional MRI experiments , 1999, Magnetic resonance in medicine.

[70]  Habib Benali,et al.  Estimation of the hemodynamic response in event-related functional MRI: Bayesian networks as a framework for efficient Bayesian modeling and inference , 2004, IEEE Transactions on Medical Imaging.

[71]  Karl J. Friston,et al.  Variational Bayesian inference for fMRI time series , 2003, NeuroImage.

[72]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[73]  L. Fahrmeir,et al.  Bayesian Modeling of the Hemodynamic Response Function in BOLD fMRI , 2001, NeuroImage.

[74]  S. Ogawa Brain magnetic resonance imaging with contrast-dependent oxygenation , 1990 .

[75]  Mark S. Cohen,et al.  Parametric Analysis of fMRI Data Using Linear Systems Methods , 1997, NeuroImage.

[76]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[77]  N V Hartvig,et al.  Spatial mixture modeling of fMRI data , 2000, Human brain mapping.

[78]  J. Idier,et al.  Application and validation of spatial mixture modelling for the joint detection-estimation of brain activity in fMRI , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[79]  C Gössl,et al.  Bayesian Spatiotemporal Inference in Functional Magnetic Resonance Imaging , 2001, Biometrics.

[80]  R. Buxton,et al.  A Model for the Coupling between Cerebral Blood Flow and Oxygen Metabolism during Neural Stimulation , 1997, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[81]  P. Green Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.

[82]  Alexis Roche,et al.  Outlier detection for robust region-based estimation of the hemodynamic response function in event-related fMRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[83]  William D. Penny,et al.  Bayesian fMRI data analysis with sparse spatial basis function priors , 2007, NeuroImage.

[84]  N Lange,et al.  Empirical and substantive models, the Bayesian paradigm, and meta‐analysis in functional brain imaging , 1997, Human brain mapping.

[85]  Mark W. Woolrich,et al.  Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data , 2005, IEEE Transactions on Medical Imaging.

[86]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[87]  J. Rajapakse,et al.  Human Brain Mapping 6:283–300(1998) � Modeling Hemodynamic Response for Analysis of Functional MRI Time-Series , 2022 .

[88]  S. Petersen,et al.  Characterizing the Hemodynamic Response: Effects of Presentation Rate, Sampling Procedure, and the Possibility of Ordering Brain Activity Based on Relative Timing , 2000, NeuroImage.