Color opponency: tutorial.

In dialogue, two color scientists introduce the topic of color opponency, as seen from the viewpoints of color appearance (psychophysics) and measurement of nerve cell responses (physiology). Points of difference as well as points of convergence between these viewpoints are explained. Key experiments from the psychophysical and physiological literature are covered in detail to help readers from these two broad fields understand each other's work.

[1]  J. Mollon "Tho' she kneel'd in that place where they grew..." The uses and origins of primate colour vision. , 1989, The Journal of experimental biology.

[2]  R. S. Turner Vision Studies in Germany: Helmholtz versus Hering , 1993, Osiris.

[3]  D. Jameson,et al.  Some Quantitative Aspects of an Opponent-Colors Theory. I. Chromatic Responses and Spectral Saturation , 1955 .

[4]  R. W. Rodieck,et al.  Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. , 1976, The Journal of physiology.

[5]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[7]  Bevil R. Conway,et al.  Specialized Color Modules in Macaque Extrastriate Cortex , 2007, Neuron.

[8]  P. Lennie,et al.  Habituation Reveals Fundamental Chromatic Mechanisms in Striate Cortex of Macaque , 2008, The Journal of Neuroscience.

[9]  Guillermo Sapiro,et al.  A subspace reverse-correlation technique for the study of visual neurons , 1997, Vision Research.

[10]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Qasim Zaidi,et al.  Salience of unique hues and implications for color theory. , 2015, Journal of vision.

[12]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[13]  Paul R. Martin,et al.  Chromatic Organization of Ganglion Cell Receptive Fields in the Peripheral Retina , 2005, The Journal of Neuroscience.

[14]  H E Smithson,et al.  Sensory, computational and cognitive components of human colour constancy , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  K Knoblauch,et al.  Relating cone signals to color appearance: Failure of monotonicity in yellow/blue , 2001, Visual Neuroscience.

[16]  B. B. Lee,et al.  Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man. , 1987, The Journal of physiology.

[17]  B. B. Lee,et al.  An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[18]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  R. Shapley,et al.  The Orientation Selectivity of Color-Responsive Neurons in Macaque V1 , 2008, The Journal of Neuroscience.

[20]  Samuel G Solomon,et al.  Modulation sensitivity of ganglion cells in peripheral retina of macaque , 2002, Vision Research.

[21]  S. Shevell,et al.  Color in complex scenes. , 2008, Annual review of psychology.

[22]  R. Shapley,et al.  Cone inputs in macaque primary visual cortex. , 2004, Journal of Neurophysiology.

[23]  J. Mollon Monge: The Verriest Lecture, Lyon, July 2005 , 2006, Visual Neuroscience.

[24]  Angela M. Brown,et al.  Higher order color mechanisms , 1986, Vision Research.

[25]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[26]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[27]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[28]  P. Lennie,et al.  Functional Asymmetries in Visual Pathways Carrying S-Cone Signals in Macaque , 2008, The Journal of Neuroscience.

[29]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[30]  Thomas Young,et al.  II. The Bakerian Lecture. On the theory of light and colours , 1802, Philosophical Transactions of the Royal Society of London.

[31]  T. Albright,et al.  Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1. , 2005, Journal of neurophysiology.

[32]  Bevil R. Conway,et al.  Color contrast in macaque V1. , 2002, Cerebral cortex.

[33]  R. L. Valois,et al.  Analysis of response patterns of LGN cells. , 1966, Journal of the Optical Society of America.

[34]  Bevil R. Conway,et al.  Neural basis for unique hues , 2008, Current Biology.

[35]  David H. Krantz,et al.  Opponent process additivity—II. Yellow/blue equilibria and nonlinear models , 1975, Vision Research.

[36]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[37]  Jonathon Shlens,et al.  Correlated firing among major ganglion cell types in primate retina , 2011, The Journal of physiology.

[38]  S Yamane,et al.  Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  G. Horwitz,et al.  Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing , 2012, Nature Neuroscience.

[40]  J. Anthony Movshon,et al.  Comparison of Recordings from Microelectrode Arrays and Single Electrodes in the Visual Cortex , 2007, The Journal of Neuroscience.

[41]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[42]  J. Pokorny,et al.  Effects of temporal frequency on phase-dependent sensitivity to heterochromatic flicker. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[43]  J. Pokorny,et al.  Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. , 1992, The Journal of physiology.

[44]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  G. H. Jacobs Primate color vision: A comparative perspective , 2008, Visual Neuroscience.

[46]  K. Gegenfurtner,et al.  Cortical mechanisms of colour vision , 2003, Nature Reviews Neuroscience.

[47]  R. Shapley,et al.  Color in the Cortex: single- and double-opponent cells , 2011, Vision Research.

[48]  C. F. Stromeyer,et al.  Colour is what the eye sees best , 1993, Nature.

[49]  B. Wandell,et al.  Specializations for Chromatic and Temporal Signals in Human Visual Cortex , 2005, Journal of Neuroscience.

[50]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[51]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.

[52]  E. Zrenner,et al.  Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells , 1981, Vision Research.