Exact and Efficient Multi-Channel Sparse Blind Deconvolution — A Nonconvex Approach

We study the multi-channel sparse blind deconvolution (MCS-BD) problem, whose task is to simultaneously recover a kernel a and multiple sparse inputs $\left\{ {{{\mathbf{x}}_i}} \right\}_{i = 1}^p$ from their circulant convolution yi = a ⊛ xi (i = 1,⋯, p). We formulate the task as a nonconvex optimization problem over the sphere. Under mild assumptions of the data, we prove that the vanilla Riemannian gradient descent (RGD) method, with random initializations, provably recovers both the kernel a and the signals $\left\{ {{{\mathbf{x}}_i}} \right\}_{i = 1}^p$ up to a signed shift ambiguity. In comparison with state-of-the-art results, our work shows significant improvements in terms of sample complexity and computational efficiency. Our theoretical results are corroborated by numerical experiments, which demonstrate superior performance of the proposed approach over the previous method on synthetic datasets.

[1]  Yu Bai,et al.  Subgradient Descent Learns Orthogonal Dictionaries , 2018, ICLR.

[2]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[3]  John Wright,et al.  Structured Local Optima in Sparse Blind Deconvolution , 2018, IEEE Transactions on Information Theory.

[4]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[5]  Pengcheng Zhou,et al.  Short-and-Sparse Deconvolution - A Geometric Approach , 2019, ICLR.

[6]  Xiao Li,et al.  Nonconvex Robust Low-rank Matrix Recovery , 2018, SIAM J. Optim..

[7]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[8]  Yanjun Li,et al.  Global Geometry of Multichannel Sparse Blind Deconvolution on the Sphere , 2018, NeurIPS.

[9]  John Wright,et al.  Finding a Sparse Vector in a Subspace: Linear Sparsity Using Alternating Directions , 2014, IEEE Transactions on Information Theory.

[10]  Zhihui Zhu,et al.  A Nonconvex Approach for Exact and Efficient Multichannel Sparse Blind Deconvolution , 2019, NeurIPS.

[11]  Anthony Man-Cho So,et al.  Incremental Methods for Weakly Convex Optimization , 2019, ArXiv.

[12]  David Pfau,et al.  Simultaneous Denoising, Deconvolution, and Demixing of Calcium Imaging Data , 2016, Neuron.

[13]  Jean-Louis Goffin,et al.  On convergence rates of subgradient optimization methods , 1977, Math. Program..

[14]  J. Burkey,et al.  WEAK SHARP MINIMA IN MATHEMATICAL PROGRAMMING , 1993 .

[15]  Justin Romberg,et al.  Multichannel myopic deconvolution in underwater acoustic channels via low-rank recovery. , 2017, The Journal of the Acoustical Society of America.

[16]  John Wright,et al.  Efficient Dictionary Learning with Gradient Descent , 2018, ICML.

[17]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[18]  Frédo Durand,et al.  Understanding Blind Deconvolution Algorithms , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  John Wright,et al.  Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture , 2015, IEEE Transactions on Information Theory.

[20]  Liming Wang,et al.  Blind Deconvolution From Multiple Sparse Inputs , 2016, IEEE Signal Processing Letters.