Chance-Constrained Optimization: A Review of Mixed-Integer Conic Formulations and Applications

Chance-constrained programming (CCP) is one of the most difficult classes of optimization problems that has attracted the attention of researchers since the 1950s. In this survey, we first review recent developments in mixed-integer linear formulations of chance-constrained programs that arise from finite discrete distributions (or sample average approximation). We highlight successful reformulations and decomposition techniques that enable the solution of large-scale instances. We then review active research in distributionally robust CCP, which is a framework to address the ambiguity in the distribution of the random data. The focal point of our review is scalable formulations that can be readily implemented with state-of-the-art optimization software. However, we also discuss alternative approaches and specialized algorithms. Furthermore, we highlight the prevalence of CCPs with a review of applications across multiple domains.

[1]  Simge Küçükyavuz,et al.  Probabilistic Partial Set Covering with an Oracle for Chance Constraints , 2019, SIAM J. Optim..

[2]  Xing Hong,et al.  Stochastic network design for disaster preparedness , 2015 .

[3]  Dinakar Gade,et al.  Decomposition algorithms with parametric Gomory cuts for two-stage stochastic integer programs , 2012, Mathematical Programming.

[4]  Kerem Bülbül,et al.  Chance-constrained stochastic programming under variable reliability levels with an application to humanitarian relief network design , 2018, Comput. Oper. Res..

[5]  Giacomo Scandolo,et al.  Assessing Financial Model Risk , 2013, Eur. J. Oper. Res..

[6]  Joel W. Burdick,et al.  Probabilistic Collision Checking With Chance Constraints , 2011, IEEE Transactions on Robotics.

[7]  Alexander Kogan,et al.  Erratum to: Threshold Boolean form for joint probabilistic constraints with random technology matrix , 2016, Math. Program..

[8]  Simge Küçükyavuz,et al.  Joint chance-constrained programs and the intersection of mixing sets through a submodularity lens , 2021, Mathematical Programming.

[9]  D. Kuhn,et al.  Data-Driven Chance Constrained Programs over Wasserstein Balls , 2018, Operations Research.

[10]  Hideaki Nakao,et al.  Non-profit resource allocation and service scheduling with cross-subsidization and uncertain resource consumptions , 2021 .

[11]  Pu Li,et al.  Stochastic Optimization for Operating Chemical Processes under Uncertainty , 2001 .

[12]  Manfred W. Padberg,et al.  A branch-and-cut approach to a traveling salesman problem with side constraints , 1989 .

[13]  Victor M. Zavala,et al.  A Sequential Algorithm for Solving Nonlinear Optimization Problems with Chance Constraints , 2018, SIAM J. Optim..

[14]  András Prékopa,et al.  Contributions to the theory of stochastic programming , 1973, Math. Program..

[15]  Siqian Shen,et al.  Solving 0–1 semidefinite programs for distributionally robust allocation of surgery blocks , 2018, Optim. Lett..

[16]  Xiaoxia Huang,et al.  Mean-chance model for portfolio selection based on uncertain measure , 2014 .

[17]  Laurence A. Wolsey,et al.  Polyhedra for lot-sizing with Wagner—Whitin costs , 1994, Math. Program..

[18]  Stephen P. Boyd,et al.  Generalized Chebyshev Bounds via Semidefinite Programming , 2007, SIAM Rev..

[19]  Homayoun Najjaran,et al.  Unscented predictive motion planning of a nonholonomic system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[20]  Wolfram Wiesemann,et al.  The Distributionally Robust Chance-Constrained Vehicle Routing Problem , 2020, Oper. Res..

[21]  Dmitry Krass,et al.  Inventory models with minimal service level constraints , 2001, Eur. J. Oper. Res..

[22]  Fatma Kilincc-Karzan,et al.  Conic Mixed-Binary Sets: Convex Hull Characterizations and Applications , 2020, 2012.14698.

[23]  Patrizia Beraldi,et al.  An exact approach for solving integer problems under probabilistic constraints with random technology matrix , 2010, Ann. Oper. Res..

[24]  Vector-valued multivariate conditional value-at-risk , 2017, Oper. Res. Lett..

[25]  Li Yao,et al.  Distributionally Robust Chance-Constrained Approximate AC-OPF With Wasserstein Metric , 2017, IEEE Transactions on Power Systems.

[26]  Javier Contreras,et al.  A Chance-Constrained Unit Commitment With an $n-K$ Security Criterion and Significant Wind Generation , 2013, IEEE Transactions on Power Systems.

[27]  Shabbir Ahmed,et al.  Convex relaxations of chance constrained optimization problems , 2014, Optim. Lett..

[28]  János D. Pintér,et al.  Deterministic approximations of probability inequalities , 1989, ZOR Methods Model. Oper. Res..

[29]  Nilay Noyan,et al.  Two-stage stochastic programming under multivariate risk constraints with an application to humanitarian relief network design , 2017, Mathematical Programming.

[30]  Stefan Minner,et al.  A Branch-and-Price Algorithm for the Vehicle Routing Problem with Stochastic Demands and Probabilistic Duration Constraints , 2020, Transp. Sci..

[31]  R. Tyrrell Rockafellar,et al.  Coherent Approaches to Risk in Optimization Under Uncertainty , 2007 .

[32]  Miguel A. Lejeune,et al.  MIP reformulations of the probabilistic set covering problem , 2010, Math. Program..

[33]  Shabbir Ahmed,et al.  Bicriteria Approximation of Chance-Constrained Covering Problems , 2020, Oper. Res..

[34]  Martin W. P. Savelsbergh,et al.  The mixed vertex packing problem , 2000, Math. Program..

[35]  Gábor Rudolf,et al.  Optimization with Multivariate Conditional Value-at-Risk Constraints , 2013, Oper. Res..

[36]  R. Henrion,et al.  Optimization of a continuous distillation process under random inflow rate , 2003 .

[37]  Barbara J. Lence,et al.  Surface water quality management using a multiple‐realization chance constraint method , 1999 .

[38]  Sanjay Mehrotra,et al.  Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room Planning , 2021, INFORMS J. Comput..

[39]  James R. Luedtke A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support , 2013, Mathematical Programming.

[40]  Xiao Liu,et al.  A polyhedral study of the static probabilistic lot-sizing problem , 2016, Ann. Oper. Res..

[41]  Harald Waschl,et al.  Flexible Spacing Adaptive Cruise Control Using Stochastic Model Predictive Control , 2018, IEEE Transactions on Control Systems Technology.

[42]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[43]  Wu Jiekang,et al.  A Hybrid Method for Optimal Scheduling of Short-Term Electric Power Generation of Cascaded Hydroelectric Plants Based on Particle Swarm Optimization and Chance-Constrained Programming , 2008, IEEE Transactions on Power Systems.

[44]  A. Shapiro,et al.  Solving Chance-Constrained Stochastic Programs via Sampling and Integer Programming , 2008 .

[45]  Daniel Kuhn,et al.  Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations , 2015, Mathematical Programming.

[46]  Alper Atamtürk,et al.  Conic mixed-integer rounding cuts , 2009, Math. Program..

[47]  Yi Yang,et al.  Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach , 2011, Oper. Res..

[48]  Bertrand Melenberg,et al.  Robust Optimization with Ambiguous Stochastic Constraints Under Mean and Dispersion Information , 2018, Oper. Res..

[49]  George L. Nemhauser,et al.  Mixed integer linear programming formulations for probabilistic constraints , 2012, Oper. Res. Lett..

[50]  Kyunghoon Cho,et al.  Chance-Constrained Multi-Layered Sampling-Based Path Planning for Temporal Logic-Based Missions , 2020 .

[51]  Alexandre M. Baptista,et al.  A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model , 2004, Manag. Sci..

[52]  Shabbir Ahmed,et al.  On Deterministic Reformulations of Distributionally Robust Joint Chance Constrained Optimization Problems , 2018, SIAM J. Optim..

[53]  Gino J. Lim,et al.  A Decomposition Algorithm for the Two-Stage Chance-Constrained Operating Room Scheduling Problem , 2020, IEEE Access.

[54]  Bartolomeo Stellato,et al.  Data-driven chance constrained optimization , 2014 .

[55]  Simge Küçükyavuz,et al.  Risk aversion to parameter uncertainty in Markov decision processes with an application to slow-onset disaster relief , 2019, IISE Trans..

[56]  Hiroaki Ishii,et al.  Stochastic spanning tree problem , 1981, Discret. Appl. Math..

[57]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[58]  Siqian Shen,et al.  Multi-objective probabilistically constrained programs with variable risk: Models for multi-portfolio financial optimization , 2016, Eur. J. Oper. Res..

[59]  Abdel Lisser,et al.  Distributionally Robust Stochastic Knapsack Problem , 2014, SIAM J. Optim..

[60]  Jin Dong,et al.  Distributionally Robust Building Load Control to Compensate Fluctuations in Solar Power Generation , 2019, 2019 American Control Conference (ACC).

[61]  Napat Rujeerapaiboon,et al.  Multi-period portfolio optimization: Translation of autocorrelation risk to excess variance , 2016, Oper. Res. Lett..

[62]  Roger J.-B. Wets,et al.  Stochastic Programming: Solution Techniques and Approximation Schemes , 1982, ISMP.

[63]  R. Wets,et al.  Stochastic programming , 1989 .

[64]  András Prékopa,et al.  Solution of a Product Substitution Problem Using Stochastic Programming , 2000 .

[65]  Maarten H. van der Vlerk,et al.  Integrated Chance Constraints: Reduced Forms and an Algorithm , 2006, Comput. Manag. Sci..

[66]  Minjiao Zhang,et al.  Finitely Convergent Decomposition Algorithms for Two-Stage Stochastic Pure Integer Programs , 2014, SIAM J. Optim..

[67]  Qiang Li,et al.  Distributionally robust chance-constrained transmit beamforming for multiuser MISO downlink , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[68]  András Prékopa,et al.  Convexity and Solutions of Stochastic Multidimensional 0-1 Knapsack Problems with Probabilistic Constraints , 2016, Math. Oper. Res..

[69]  R. Ravi,et al.  Approximation Algorithms for Robust Covering Problems with Chance Constraints , 2008 .

[70]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[71]  Rekha R. Thomas,et al.  An algebraic geometry algorithm for scheduling in presence of setups and correlated demands , 1995, Math. Program..

[72]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[73]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[74]  Ruiwei Jiang,et al.  Optimized Bonferroni approximations of distributionally robust joint chance constraints , 2019, Math. Program..

[75]  Siqian Shen,et al.  Risk-Averse Shortest Path Interdiction , 2016, INFORMS J. Comput..

[76]  Shahin Sirouspour,et al.  A Chance-Constraints-Based Control Strategy for Microgrids With Energy Storage and Integrated Electric Vehicles , 2018, IEEE Transactions on Smart Grid.

[77]  Minjiao Zhang,et al.  A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints , 2014, Manag. Sci..

[78]  Line A. Roald,et al.  Chance Constraints for Improving the Security of AC Optimal Power Flow , 2018, IEEE Transactions on Power Systems.

[79]  Kyungsik Lee,et al.  Robust optimization approach for a chance-constrained binary knapsack problem , 2016, Math. Program..

[80]  James R. Luedtke,et al.  Solving Chance-Constrained Problems via a Smooth Sample-Based Nonlinear Approximation , 2019, SIAM J. Optim..

[81]  Evdokia Nikolova,et al.  Approximation Algorithms for Reliable Stochastic Combinatorial Optimization , 2010, APPROX-RANDOM.

[82]  Miguel A. Lejeune,et al.  Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems , 2012, Oper. Res..

[83]  James R. Luedtke,et al.  Nonanticipative duality, relaxations, and formulations for chance-constrained stochastic programs , 2016, Mathematical Programming.

[84]  Hui Zhang,et al.  Chance Constrained Programming for Optimal Power Flow Under Uncertainty , 2011, IEEE Transactions on Power Systems.

[85]  Marco C. Campi,et al.  A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality , 2011, J. Optim. Theory Appl..

[86]  Nan Jiang,et al.  ALSO-X is Better Than CVaR: Convex Approximations for Chance Constrained Programs Revisited , 2020 .

[87]  Lewis Ntaimo,et al.  A comparative study of decomposition algorithms for stochastic combinatorial optimization , 2008, Comput. Optim. Appl..

[88]  Masahiro Ono,et al.  Collision-Free Encoding for Chance-Constrained Nonconvex Path Planning , 2019, IEEE Transactions on Robotics.

[89]  Myun-Seok Cheon,et al.  A branch-reduce-cut algorithm for the global optimization of probabilistically constrained linear programs , 2006, Math. Program..

[90]  Daniel Kuhn,et al.  A distributionally robust perspective on uncertainty quantification and chance constrained programming , 2015, Mathematical Programming.

[91]  James R. Luedtke,et al.  Branch-and-cut approaches for chance-constrained formulations of reliable network design problems , 2013, Mathematical Programming Computation.

[92]  Dimitri J. Papageorgiou,et al.  Probabilistic Set Covering with Correlations , 2013, Oper. Res..

[93]  Claus C. Carøe,et al.  A cutting-plane approach to mixed 0-1 stochastic integer programs , 1997 .

[94]  Siqian Shen,et al.  Decomposition algorithms for optimizing multi-server appointment scheduling with chance constraints , 2016, Math. Program..

[95]  Lewis Ntaimo,et al.  Fenchel decomposition for stochastic mixed-integer programming , 2013, J. Glob. Optim..

[96]  Suvrajeet Sen,et al.  Stochastic Mixed‐Integer Programming Algorithms: Beyond Benders' Decomposition , 2011 .

[97]  Saeedeh Parsaeefard,et al.  Robust Ergodic Uplink Resource Allocation in Underlay OFDMA Cognitive Radio Networks , 2016, IEEE Transactions on Mobile Computing.

[98]  Willem K. Klein Haneveld Integrated Chance Constraints , 1986 .

[99]  René Henrion,et al.  A model for dynamic chance constraints in hydro power reservoir management , 2010, Eur. J. Oper. Res..

[100]  Michael R. Wagner Stochastic 0-1 linear programming under limited distributional information , 2008, Oper. Res. Lett..

[101]  René Henrion,et al.  Chance Constrained Programming and Its Applications to Energy Management , 2011 .

[102]  Feng Qiu,et al.  Chance-Constrained Transmission Switching With Guaranteed Wind Power Utilization , 2015, IEEE Transactions on Power Systems.

[103]  A. Charnes,et al.  Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints , 1963 .

[104]  James R. Luedtke,et al.  A Sample Approximation Approach for Optimization with Probabilistic Constraints , 2008, SIAM J. Optim..

[105]  Suvrajeet Sen Relaxations for probabilistically constrained programs with discrete random variables , 1992, Oper. Res. Lett..

[106]  Vladimir Marianov,et al.  A probabilistic quality of service constraint for a location model of switches in ATM communications networks , 2000, Ann. Oper. Res..

[107]  Hui Shao,et al.  Worst-Case Range Value-at-Risk with Partial Information , 2017, SIAM J. Financial Math..

[108]  Alper Atamtürk,et al.  On the facets of the mixed–integer knapsack polyhedron , 2003, Math. Program..

[109]  M. Mazadi,et al.  Modified Chance-Constrained Optimization Applied to the Generation Expansion Problem , 2009, IEEE Transactions on Power Systems.

[110]  Weijun Xie,et al.  On distributionally robust chance constrained programs with Wasserstein distance , 2018, Mathematical Programming.

[111]  Shie Mannor,et al.  Optimization Under Probabilistic Envelope Constraints , 2012, Oper. Res..

[112]  András Prékopa,et al.  Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution , 1990, ZOR Methods Model. Oper. Res..

[113]  Lewis Ntaimo,et al.  The Million-Variable “March” for Stochastic Combinatorial Optimization , 2005, J. Glob. Optim..

[114]  Miguel A. Lejeune,et al.  Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints , 2018, Ann. Oper. Res..

[115]  Melvyn Sim,et al.  Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets , 2019, Oper. Res..

[116]  Wei Tian,et al.  Chance-Constrained Day-Ahead Scheduling in Stochastic Power System Operation , 2014, IEEE Transactions on Power Systems.

[117]  George L. Nemhauser,et al.  An integer programming approach for linear programs with probabilistic constraints , 2007, Math. Program..

[118]  N. Roy,et al.  Regression-based LP solver for chance-constrained finite horizon optimal control with nonconvex constraints , 2011, Proceedings of the 2011 American Control Conference.

[119]  Siqian Shen,et al.  Risk and Energy Consumption Tradeoffs in Cloud Computing Service via Stochastic Optimization Models , 2012, 2012 IEEE Fifth International Conference on Utility and Cloud Computing.

[120]  Melvyn Sim,et al.  From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization , 2010, Oper. Res..

[121]  Xiao Liu,et al.  Decomposition algorithms for two-stage chance-constrained programs , 2014, Mathematical Programming.

[122]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[123]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[124]  Daniel Kuhn,et al.  Worst-Case Value at Risk of Nonlinear Portfolios , 2013, Manag. Sci..

[125]  Huan Xu,et al.  Distributionally robust chance constraints for non-linear uncertainties , 2014, Mathematical Programming.

[126]  B. Norman,et al.  A solution to the stochastic unit commitment problem using chance constrained programming , 2004, IEEE Transactions on Power Systems.

[127]  Simge Küçükyavuz,et al.  On mixing sets arising in chance-constrained programming , 2012, Math. Program..

[128]  Melvyn Sim,et al.  Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization , 2008, Manag. Sci..

[129]  Zhipeng Liu,et al.  Optimal Siting and Sizing of Distributed Generators in Distribution Systems Considering Uncertainties , 2011, IEEE Transactions on Power Delivery.

[130]  Georgios B. Giannakis,et al.  Chance-Constrained Optimization of OFDMA Cognitive Radio Uplinks , 2013, IEEE Transactions on Wireless Communications.

[131]  R. Jagannathan,et al.  Chance-Constrained Programming with Joint Constraints , 1974, Oper. Res..

[132]  Napat Rujeerapaiboon,et al.  Robust Growth-Optimal Portfolios , 2016, Manag. Sci..

[133]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[134]  Ming Zhao,et al.  A polyhedral study on chance constrained program with random right-hand side , 2017, Math. Program..

[135]  Kyri Baker,et al.  Chance-Constrained AC Optimal Power Flow for Distribution Systems With Renewables , 2017, IEEE Transactions on Power Systems.

[136]  John Lygeros,et al.  Data-Driven Chance Constrained Optimization under Wasserstein Ambiguity Sets , 2018, 2019 American Control Conference (ACC).

[137]  Ruiwei Jiang,et al.  Chance-constrained set covering with Wasserstein ambiguity , 2020, Mathematical Programming.

[138]  Siqian Shen,et al.  On the Values of Vehicle-to-Grid Electricity Selling in Electric Vehicle Sharing , 2018, Manuf. Serv. Oper. Manag..

[139]  Yongpei Guan,et al.  A Chance-Constrained Two-Stage Stochastic Program for Unit Commitment With Uncertain Wind Power Output , 2012, IEEE Transactions on Power Systems.

[140]  A. Charnes,et al.  Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil , 1958 .

[141]  Arkadi Nemirovski,et al.  On safe tractable approximations of chance constraints , 2012, Eur. J. Oper. Res..

[142]  Marco C. Campi,et al.  The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..

[143]  Barrett W. Thomas,et al.  Probabilistic Traveling Salesman Problem with Deadlines , 2008, Transp. Sci..

[144]  Masahiro Ono,et al.  Chance-Constrained Optimal Path Planning With Obstacles , 2011, IEEE Transactions on Robotics.

[145]  Brian T. Denton,et al.  Chance-Constrained Surgery Planning Under Conditions of Limited and Ambiguous Data , 2016 .

[146]  A. Vries Value at Risk , 2019, Derivatives.

[147]  Johanna L. Mathieu,et al.  Distributionally Robust Chance-Constrained Optimal Power Flow With Uncertain Renewables and Uncertain Reserves Provided by Loads , 2017, IEEE Transactions on Power Systems.

[148]  Aurélie Thiele,et al.  Data-driven portfolio management with quantile constraints , 2015, OR Spectrum.

[149]  Jean-Yves Potvin,et al.  Vehicle Routing , 2009, Encyclopedia of Optimization.

[150]  Jean Lasserre,et al.  Distributionally robust polynomial chance-constraints under mixture ambiguity sets , 2018, Mathematical Programming.

[151]  Lewis Ntaimo,et al.  IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation , 2010, Eur. J. Oper. Res..

[152]  Peng Sun,et al.  A Robust Optimization Perspective on Stochastic Programming , 2007, Oper. Res..

[153]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[154]  Ricardo Fukasawa,et al.  On the mixing set with a knapsack constraint , 2016, Math. Program..

[155]  Daniel Kuhn,et al.  Ambiguous Joint Chance Constraints Under Mean and Dispersion Information , 2017, Oper. Res..

[156]  Alexander Shapiro,et al.  Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications , 2009, J. Optimization Theory and Applications.

[157]  Yong Li,et al.  A smooth non-parametric estimation framework for safety-first portfolio optimization , 2015 .

[158]  S. Kataoka A Stochastic Programming Model , 1963 .

[159]  Chaitanya Swamy,et al.  Risk-averse stochastic optimization: probabilistically-constrained models and algorithms for black-box distributions , 2011, SODA '11.

[160]  G. Pflug Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk , 2000 .

[161]  Julia L. Higle,et al.  The C3 Theorem and a D2 Algorithm for Large Scale Stochastic Mixed-Integer Programming: Set Convexification , 2005, Math. Program..

[162]  A. Lodi,et al.  Nonlinear chance-constrained problems with applications to hydro scheduling , 2019, Math. Program..

[163]  András Prékopa,et al.  ON PROBABILISTIC CONSTRAINED PROGRAMMING , 2015 .

[164]  Nam Ho-Nguyen,et al.  Strong Formulations for Distributionally Robust Chance-Constrained Programs with Left-Hand Side Uncertainty Under Wasserstein Ambiguity , 2020, INFORMS Journal on Optimization.

[165]  Hanif D. Sherali,et al.  Disjunctive Programming , 2009, Encyclopedia of Optimization.

[166]  Bowen Li,et al.  Ambiguous risk constraints with moment and unimodality information , 2019, Math. Program..

[167]  Laurence A. Wolsey,et al.  Covering Linear Programming with Violations , 2014, INFORMS J. Comput..

[168]  Bowen Li,et al.  Distributionally Robust Chance-Constrained Optimal Power Flow Assuming Unimodal Distributions With Misspecified Modes , 2018, IEEE Transactions on Control of Network Systems.

[169]  Gerardo José Lemus Rodriguez Portfolio optimization with quantile-based risk measures , 1999 .

[170]  Gilbert Laporte,et al.  The electric vehicle routing problem with energy consumption uncertainty , 2019, Transportation Research Part B: Methodological.

[171]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[172]  Junfei Xie,et al.  Safe Path Planning for Unmanned Aerial Vehicle under Location Uncertainty , 2020, 2020 IEEE 16th International Conference on Control & Automation (ICCA).

[173]  Xiao Liu,et al.  Robust multicriteria risk-averse stochastic programming models , 2017, Ann. Oper. Res..

[174]  Darinka Dentcheva,et al.  Optimization Models with Probabilistic Constraints , 2006 .

[175]  John Lygeros,et al.  A Probabilistic Framework for Reserve Scheduling and ${\rm N}-1$ Security Assessment of Systems With High Wind Power Penetration , 2013, IEEE Transactions on Power Systems.

[176]  Alexander Kogan,et al.  Threshold Boolean form for joint probabilistic constraints with random technology matrix , 2014, Math. Program..

[177]  Gilbert Laporte,et al.  The integer L-shaped method for stochastic integer programs with complete recourse , 1993, Oper. Res. Lett..

[178]  Alper Atamtürk,et al.  Polymatroids and mean-risk minimization in discrete optimization , 2008, Oper. Res. Lett..

[179]  Stavros A. Zenios,et al.  Robust VaR and CVaR Optimization under Joint Ambiguity in Distributions, Means, and Covariances , 2016, Eur. J. Oper. Res..

[180]  Dritan Nace,et al.  A robust approach to the chance-constrained knapsack problem , 2008, Oper. Res. Lett..

[181]  Abebe Geletu,et al.  An Inner-Outer Approximation Approach to Chance Constrained Optimization , 2017, SIAM J. Optim..

[182]  James R. Luedtke,et al.  Chance-Constrained Binary Packing Problems , 2014, INFORMS J. Comput..

[183]  Hanif D. Sherali,et al.  On the convergence of cutting plane algorithms for a class of nonconvex mathematical programs , 1985, Math. Program..

[184]  Ran Ji,et al.  Data-driven distributionally robust chance-constrained optimization with Wasserstein metric , 2020, Journal of Global Optimization.

[185]  Xiao Liu,et al.  On intersection of two mixing sets with applications to joint chance-constrained programs , 2018, Mathematical Programming.

[186]  Xiang Li,et al.  Probabilistically Constrained Linear Programs and Risk-Adjusted Controller Design , 2005, SIAM J. Optim..

[187]  Sanjay Mehrotra,et al.  Distributionally Robust Optimization: A Review , 2019, ArXiv.

[188]  Nilay Noyan,et al.  A chance-constrained two-stage stochastic programming model for humanitarian relief network design , 2018 .

[189]  Weijun Xie,et al.  Distributionally Robust Chance Constrained Optimal Power Flow with Renewables: A Conic Reformulation , 2018, IEEE Transactions on Power Systems.

[190]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[191]  R. Ravi,et al.  A PTAS for the chance-constrained knapsack problem with random item sizes , 2010, Oper. Res. Lett..

[192]  Nilay Noyan,et al.  Cut generation for optimization problems with multivariate risk constraints , 2015, Mathematical Programming.

[193]  Siqian Shen Using integer programming for balancing return and risk in problems with individual chance constraints , 2014, Comput. Oper. Res..

[194]  Jinlin Li,et al.  Distributionally robust chance-constrained program surgery planning with downstream resource , 2017, 2017 International Conference on Service Systems and Service Management.

[195]  Alper Atamtürk,et al.  Submodularity in Conic Quadratic Mixed 0-1 Optimization , 2017, Oper. Res..

[196]  Daniel Kuhn,et al.  Distributionally robust joint chance constraints with second-order moment information , 2011, Mathematical Programming.

[197]  Xiaoguang Yang,et al.  Optimal portfolio allocation under the probabilistic VaR constraint and incentives for financial innovation , 2008 .

[198]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[199]  Morteza Zadimoghaddam,et al.  Overcommitment in Cloud Services Bin packing with Chance Constraints , 2016, SIGMETRICS.

[200]  Miles Lubin,et al.  A Robust Approach to Chance Constrained Optimal Power Flow With Renewable Generation , 2015, IEEE Transactions on Power Systems.

[201]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[202]  David W. Casbeer,et al.  Cooperative Air-Ground Vehicle Routing using Chance-Constrained Optimization , 2020, 2020 American Control Conference (ACC).

[203]  Oktay Günlük,et al.  Mixing mixed-integer inequalities , 2001, Math. Program..

[204]  Shabbir Ahmed,et al.  Relaxations and approximations of chance constraints under finite distributions , 2018, Mathematical Programming.

[205]  Nam Ho-Nguyen,et al.  Distributionally robust chance-constrained programs with right-hand side uncertainty under Wasserstein ambiguity , 2020, Mathematical Programming.

[206]  Insoon Yang,et al.  Wasserstein Distributionally Robust Stochastic Control: A Data-Driven Approach , 2018, IEEE Transactions on Automatic Control.

[207]  Michael Chertkov,et al.  Chance-Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty , 2012, SIAM Rev..

[208]  Darinka Dentcheva,et al.  Optimization with Stochastic Dominance Constraints , 2003, SIAM J. Optim..

[209]  Jiamin Wang,et al.  The ß-Reliable Median on a Network with Discrete Probabilistic Demand Weights , 2007, Oper. Res..

[210]  Bowen Li,et al.  Distributionally Robust Chance Constrained Optimal Power Flow Assuming Log-Concave Distributions , 2018, 2018 Power Systems Computation Conference (PSCC).

[211]  Benjamin F. Hobbs,et al.  Optimization methods for electric utility resource planning , 1995 .

[212]  Garud Iyengar,et al.  Ambiguous chance constrained problems and robust optimization , 2006, Math. Program..

[213]  Itay Gurvich,et al.  Staffing Call Centers with Uncertain Demand Forecasts: A Chance-Constrained Optimization Approach , 2010, Manag. Sci..

[214]  Darinka Dentcheva,et al.  Concavity and efficient points of discrete distributions in probabilistic programming , 2000, Math. Program..

[215]  L. Meyers,et al.  Timing social distancing to avert unmanageable COVID-19 hospital surges , 2020, Proceedings of the National Academy of Sciences.

[216]  Patrizia Beraldi,et al.  A branch and bound method for stochastic integer problems under probabilistic constraints , 2002, Optim. Methods Softw..

[217]  Shabbir Ahmed,et al.  On quantile cuts and their closure for chance constrained optimization problems , 2018, Math. Program..

[218]  Arumugam Nallanathan,et al.  Energy-Efficient Chance-Constrained Resource Allocation for Multicast Cognitive OFDM Network , 2016, IEEE Journal on Selected Areas in Communications.

[219]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[220]  Andrzej Ruszczynski,et al.  Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra , 2002, Math. Program..

[221]  Holger Voos,et al.  A Real-Time Approach for Chance-Constrained Motion Planning With Dynamic Obstacles , 2020, IEEE Robotics and Automation Letters.

[222]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[223]  T. González Grandón,et al.  Dynamic probabilistic constraints under continuous random distributions , 2020, Mathematical Programming.

[224]  Qiuwei Wu,et al.  Distribution Locational Marginal Pricing for Optimal Electric Vehicle Charging Through Chance Constrained Mixed-Integer Programming , 2018, IEEE Transactions on Smart Grid.

[225]  Anindya De Boolean function analysis meets stochastic optimization: An approximation scheme for stochastic knapsack , 2018, SODA.

[226]  Xiaolan Xie,et al.  Branch and Price for Chance-Constrained Bin Packing , 2020, INFORMS J. Comput..

[227]  James R. Luedtke,et al.  Exact algorithms for the chance-constrained vehicle routing problem , 2016, IPCO.

[228]  Ruiwei Jiang,et al.  Data-driven chance constrained stochastic program , 2015, Mathematical Programming.

[229]  Suvrajeet Sen,et al.  The Ancestral Benders’ cutting plane algorithm with multi-term disjunctions for mixed-integer recourse decisions in stochastic programming , 2016, Mathematical Programming.

[230]  Kyungsik Lee,et al.  Robust optimization-based heuristic algorithm for the chance-constrained knapsack problem using submodularity , 2020, Optim. Lett..

[231]  Suvrajeet Sen,et al.  A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems , 2004, Manag. Sci..

[232]  Benjamin Van Roy,et al.  On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming , 2004, Math. Oper. Res..

[233]  A. Kleywegt,et al.  Distributionally Robust Stochastic Optimization with Wasserstein Distance , 2016, Math. Oper. Res..

[234]  Hiroyuki Okuda,et al.  Scenario-based model predictive speed controller considering probabilistic constraint for driving scene with pedestrian , 2020, 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC).

[235]  N. Revathy,et al.  Slow Adaptive OFDMA Systems Through Chance Constrained Programming , 2010, IEEE Transactions on Signal Processing.

[236]  Patrizia Beraldi,et al.  The Probabilistic Set-Covering Problem , 2002, Oper. Res..

[237]  Matteo Fischetti,et al.  Cutting plane versus compact formulations for uncertain (integer) linear programs , 2012, Math. Program. Comput..

[238]  G. Calafiore,et al.  On Distributionally Robust Chance-Constrained Linear Programs , 2006 .

[239]  Karthyek R. A. Murthy,et al.  Quantifying Distributional Model Risk Via Optimal Transport , 2016, Math. Oper. Res..

[240]  Shuai Ma,et al.  Chance Constrained Robust Beamforming in Cognitive Radio Networks , 2013, IEEE Communications Letters.

[241]  Shanshan Wang,et al.  A Solution Approach to Distributionally Robust Chance-Constrained Assignment Problems , 2019 .

[242]  Grani Adiwena Hanasusanto,et al.  Decision making under uncertainty: robust and data-driven approaches , 2015 .

[243]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[244]  Ruiwei Jiang,et al.  Ambiguous Chance-Constrained Binary Programs under Mean-Covariance Information , 2016, SIAM J. Optim..

[245]  Suvrajeet Sen,et al.  An Introduction to Two-Stage Stochastic Mixed-Integer Programming , 2017 .

[246]  Bernardo K. Pagnoncelli,et al.  Chance-constrained problems and rare events: an importance sampling approach , 2016, Math. Program..