3D‐Printed MOF‐Derived Hierarchically Porous Frameworks for Practical High‐Energy Density Li–O2 Batteries

[1]  Xin Wang,et al.  3D printing of polymer matrix composites: A review and prospective , 2017 .

[2]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[3]  Lei Zhang,et al.  2D Metal-Organic Frameworks Derived Nanocarbon Arrays for Substrate Enhancement in Flexible Supercapacitors. , 2018, Small.

[4]  Wei Lu,et al.  3D Foam-Like Composites of Mo2C Nanorods Coated by N-Doped Carbon: A Novel Self-Standing and Binder-Free O2 Electrode for Li-O2 Batteries. , 2018, ACS applied materials & interfaces.

[5]  H. Byon,et al.  Brush-Like Cobalt Nitride Anchored Carbon Nanofiber Membrane: Current Collector-Catalyst Integrated Cathode for Long Cycle Li-O2 Batteries. , 2017, ACS nano.

[6]  J. Holmes,et al.  On the Use of Gas Diffusion Layers as Current Collectors in Li-O2 Battery Cathodes , 2014 .

[7]  Hee-Dae Lim,et al.  All-carbon-based cathode for a true high-energy-density Li-O2 battery , 2017 .

[8]  Kaiming Liao,et al.  Facile in Situ Preparation of Graphitic-C₃N₄@carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li-O₂ Battery. , 2015, ACS applied materials & interfaces.

[9]  Boyang Liu,et al.  Hierarchically Porous, Ultrathick, “Breathable” Wood‐Derived Cathode for Lithium‐Oxygen Batteries , 2018 .

[10]  J. Xie,et al.  Au‐Decorated Cracked Carbon Tube Arrays as Binder‐Free Catalytic Cathode Enabling Guided Li2O2 Inner Growth for High‐Performance Li‐O2 Batteries , 2016 .

[11]  Rotraut Merkle,et al.  Electron and Ion Transport In Li2O2 , 2013, Advanced materials.

[12]  J. Lewis,et al.  3D Printing of Interdigitated Li‐Ion Microbattery Architectures , 2013, Advanced materials.

[13]  Haegyeom Kim,et al.  Reaction chemistry in rechargeable Li-O2 batteries. , 2017, Chemical Society reviews.

[14]  Jong-Won Lee,et al.  Carbon-, binder-, and precious metal-free cathodes for non-aqueous lithium-oxygen batteries: nanoflake-decorated nanoneedle oxide arrays. , 2014, ACS applied materials & interfaces.

[15]  Venkatasubramanian Viswanathan,et al.  Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O₂ batteries. , 2015, Nature chemistry.

[16]  Dan Xu,et al.  Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries , 2013, Nature Communications.

[17]  Yousung Jung,et al.  Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries , 2018, Nature Communications.

[18]  Kaixue Wang,et al.  Free-Standing Air Cathodes Based on 3D Hierarchically Porous Carbon Membranes: Kinetic Overpotential of Continuous Macropores in Li-O2 Batteries. , 2018, Angewandte Chemie.

[19]  Wenmiao Shu,et al.  Additive Manufacturing: Unlocking the Evolution of Energy Materials , 2017, Advanced science.

[20]  Z. Wen,et al.  A free-standing-type design for cathodes of rechargeable Li–O2 batteries , 2011 .

[21]  Yang Shao-Horn,et al.  Lithium–oxygen batteries: bridging mechanistic understanding and battery performance , 2013 .

[22]  De‐Yin Wu,et al.  Design and Performance of Rechargeable Sodium Ion Batteries, and Symmetrical Li‐Ion Batteries with Supercapacitor‐Like Power Density Based upon Polyoxovanadates , 2018 .

[23]  Feng Zhang,et al.  3D printing technologies for electrochemical energy storage , 2017 .

[24]  Yufan Zhang,et al.  Cobalt and nitrogen co-embedded onion-like mesoporous carbon vesicles as efficient catalysts for oxygen reduction reaction , 2014 .

[25]  Huamin Zhang,et al.  Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries. , 2015, ACS applied materials & interfaces.

[26]  Venkatasubramanian Viswanathan,et al.  Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity , 2015, Proceedings of the National Academy of Sciences.

[27]  Zhigang Zak Fang,et al.  A lithium–oxygen battery based on lithium superoxide , 2016, Nature.

[28]  Boyang Liu,et al.  Extrusion‐Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes , 2018, Advanced materials.

[29]  Xin-bo Zhang,et al.  Ultrathin, Lightweight, and Wearable Li-O2 Battery with High Robustness and Gravimetric/Volumetric Energy Density. , 2017, Small.

[30]  Jonathon R. Harding,et al.  In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions , 2012, Scientific Reports.

[31]  Mingjun Hu,et al.  3D printed porous carbon anode for enhanced power generation in microbial fuel cell , 2018 .

[32]  Xin-bo Zhang,et al.  Cathode Surface‐Induced, Solvation‐Mediated, Micrometer‐Sized Li2O2 Cycling for Li–O2 Batteries , 2016, Advanced materials.

[33]  Linda F. Nazar,et al.  Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge , 2013 .

[34]  Bing Sun,et al.  Unraveling the catalytic activities of ruthenium nanocrystals in high performance aprotic Li–O2 batteries , 2016 .

[35]  B. McCloskey,et al.  Nonaqueous Li-air batteries: a status report. , 2014, Chemical reviews.

[36]  Tao Zhang,et al.  Superior Performance of a Li–O2 Battery with Metallic RuO2 Hollow Spheres as the Carbon‐Free Cathode , 2015 .

[37]  Kyeongse Song,et al.  Ultra-low overpotential and high rate capability in Li–O2 batteries through surface atom arrangement of PdCu nanocatalysts , 2014 .

[38]  Hye Ryung Byon,et al.  Unexpected Li2O2 Film Growth on Carbon Nanotube Electrodes with CeO2 Nanoparticles in Li-O2 Batteries. , 2016, Nano letters.

[39]  Linda F Nazar,et al.  The importance of nanometric passivating films on cathodes for Li-air batteries. , 2014, ACS nano.

[40]  Donald J. Siegel,et al.  Charge transport in lithium peroxide: relevance for rechargeable metal–air batteries , 2013 .

[41]  Jianguo Wang,et al.  Integrating cobalt phosphide and cobalt nitride-embedded nitrogen-rich nanocarbons: high-performance bifunctional electrocatalysts for oxygen reduction and evolution , 2016 .

[42]  Z. Wen,et al.  Cobalt-Metal-Based Cathode for Lithium–Oxygen Battery with Improved Electrochemical Performance , 2016 .

[43]  Xuan Hu,et al.  A lithium–oxygen battery with a long cycle life in an air-like atmosphere , 2018, Nature.

[44]  Dehui Deng,et al.  Low charge overpotential of lithium-oxygen batteries with metallic Co encapsulated in single-layer graphene shell as the catalyst , 2016 .

[45]  Zhen Zhou,et al.  A composite of Co nanoparticles highly dispersed on N-rich carbon substrates: an efficient electrocatalyst for Li-O(2) battery cathodes. , 2014, Chemical communications.

[46]  Soo-Jin Park,et al.  Optimization of Carbon‐ and Binder‐Free Au Nanoparticle‐Coated Ni Nanowire Electrodes for Lithium‐Oxygen Batteries , 2015 .

[47]  Tong-Yi Zhang,et al.  Anomalous Enhancement of Li‐O2 Battery Performance with Li2O2 Films Assisted by NiFeOx Nanofiber Catalysts: Insights into Morphology Control , 2016 .

[48]  John Wang,et al.  Hollow Co3O4 Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid‐State Zinc–Air Batteries , 2017, Advanced materials.

[49]  Betar M. Gallant,et al.  All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries , 2011 .

[50]  Bin Li,et al.  3D Printing Sulfur Copolymer‐Graphene Architectures for Li‐S Batteries , 2018 .

[51]  Dunwei Wang,et al.  Selective deposition of Ru nanoparticles on TiSi₂ nanonet and its utilization for Li₂O₂ formation and decomposition. , 2014, Journal of the American Chemical Society.

[52]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[53]  Wenming Liu,et al.  High throughput and multiplex localization of proteins and cells for in situ micropatterning using pneumatic microfluidics. , 2015, The Analyst.

[54]  Tao Liu,et al.  Cycling Li-O2 batteries via LiOH formation and decomposition , 2015, Science.

[55]  John Wang,et al.  Rational Design of Metal‐Organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis , 2017 .

[56]  Kishan Dholakia,et al.  The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. , 2014, Nature chemistry.

[57]  P. Alexandridis,et al.  Temperature-Dependent Adsorption of Pluronic F127 Block Copolymers onto Carbon Black Particles Dispersed in Aqueous Media , 2002 .

[58]  Yufan Zhang,et al.  N-doped graphitic layer encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline media. , 2015, Nanoscale.

[59]  F. Huo,et al.  Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries. , 2017, Chemical Society reviews.

[60]  F. Huo,et al.  Effect of oxygen adsorbability on the control of Li2O2 growth in Li-O2 batteries: Implications for cathode catalyst design , 2017 .