An extension of the Moulin No Show Paradox for voting correspondences
暂无分享,去创建一个
[1] Lin Zhou,et al. Multi-valued strategy-proof social choice rules , 2002, Soc. Choice Welf..
[2] Alan D. Taylor,et al. Social choice and the mathematics of manipulation , 2005 .
[3] Joaquín Pérez,et al. Incidence of no-show paradoxes in Condorcet choice functions , 1995 .
[4] Arunava Sen,et al. Strategy-proof Social Choice Correspondences , 2001, J. Econ. Theory.
[5] Alan D. Taylor,et al. The Manipulability of Voting Systems , 2002, Am. Math. Mon..
[6] J. Pérez. The Strong No Show Paradoxes are a common flaw in Condorcet voting correspondences , 2001 .
[7] P. Gärdenfors. Manipulation of social choice functions , 1976 .
[8] P. Fishburn. Condorcet Social Choice Functions , 1977 .
[9] H. Young,et al. A Consistent Extension of Condorcet’s Election Principle , 1978 .
[10] H. Moulin. Condorcet's principle implies the no show paradox , 1988 .
[11] José Luis Jimeno Pastor. Propiedades de participación en los métodos de agregación de preferencias , 2004 .
[12] Peter C. Fishburn,et al. Paradoxes of Preferential Voting , 1983 .
[13] John Duggan,et al. Strategic manipulability without resoluteness or shared beliefs: Gibbard-Satterthwaite generalized , 2000, Soc. Choice Welf..
[14] H. P. Young,et al. An axiomatization of Borda's rule , 1974 .