Variational inference of the fiber orientation density using diffusion MR imaging

Diffusion MR imaging has enabled the in vivo exploration of the connectional architecture in human brain. This method particularly reveals the complex system of long-range nerve fibers that integrate the functionally distinct areas of the cerebral cortex. Since the fibers are not directly observed but the diffusion process of water molecules in the underlying material, a forward model is established that maps the microgeometry of nervous tissue onto the diffusion-weighted signals. This article proposes the spherical deconvolution of the fiber orientation density in a reproducing kernel Hilbert space, thereby generalizing previous approaches that perform a truncated Fourier analysis on the sphere. The specified inverse problem is solved within a smoothing spline framework which preserves the characteristic properties of a density function, namely its normalization and non-negativity. A Gaussian process model allows the specification of confidence bands for the estimated fiber orientation density and the rigorous selection of the hyperparameters, here the high-frequency content in the density function and the noise variance of the MR observations. In addition, we weaken the constant diffusivity assumption frequently made in the spherical convolution methodology. The novel approach, which uncovers the fiber orientation field of white matter, is demonstrated with diffusion-weighted data sets featuring high angular resolution.

[1]  Y. Yovel,et al.  AxCaliber – A Method to Measure the Axon Diameter Distribution and Density in Neuronal Tissues , 2005 .

[2]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[3]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[4]  A. O'Hagan,et al.  Curve Fitting and Optimal Design for Prediction , 1978 .

[5]  Dennis M. Healy,et al.  An empirical Bayes approach to directional data and efficient computation on the sphere , 1996 .

[6]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[7]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[8]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[9]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[10]  Florencio I. Utreras,et al.  Smoothing noisy data under monotonicity constraints existence, characterization and convergence rates , 1985 .

[11]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[12]  T. L. James,et al.  CHAPTER 2 – PRINCIPLES OF NUCLEAR MAGNETIC RESONANCE , 1975 .

[13]  Daniel C. Alexander,et al.  Maximum Entropy Spherical Deconvolution for Diffusion MRI , 2005, IPMI.

[14]  J. R. Hughes,et al.  Two hemispheres — one brain: functions of the corpus callosum , 1987 .

[15]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[16]  I. Johnstone,et al.  Maximum Entropy and the Nearly Black Object , 1992 .

[17]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[18]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[19]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[20]  Callaghan,et al.  Spin Echo Analysis of Restricted Diffusion under Generalized Gradient Waveforms: Planar, Cylindrical, and Spherical Pores with Wall Relaxivity. , 1999, Journal of magnetic resonance.

[21]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[22]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[23]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[25]  Giuseppe Scotti,et al.  A Model-Based Deconvolution Approach to Solve Fiber Crossing in Diffusion-Weighted MR Imaging , 2007, IEEE Transactions on Biomedical Engineering.

[26]  G. Wahba Spline Interpolation and Smoothing on the Sphere , 1981 .

[27]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[28]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging , 2007, NeuroImage.

[29]  G Lohmann,et al.  LIPSIA--a new software system for the evaluation of functional magnetic resonance images of the human brain. , 2001, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[30]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[31]  Grace Wahba,et al.  Inequality-Constrained Multivariate Smoothing Splines with Application to the Estimation of Posterior Probabilities , 1987 .

[32]  Denis Le Bihan,et al.  Looking into the functional architecture of the brain with diffusion MRI , 2003, Nature Reviews Neuroscience.

[33]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[35]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[36]  R Mark Henkelman,et al.  Orientational diffusion reflects fiber structure within a voxel , 2002, Magnetic resonance in medicine.

[37]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[38]  Baba C. Vemuri,et al.  A Unified Computational Framework for Deconvolution to Reconstruct Multiple Fibers From Diffusion Weighted MRI , 2007, IEEE Transactions on Medical Imaging.

[39]  M. Axer,et al.  Quantitative estimation of 3-D fiber course in gross histological sections of the human brain using polarized light , 2001, Journal of Neuroscience Methods.

[40]  A. Anwander,et al.  Connectivity-Based Parcellation of Broca's Area. , 2006, Cerebral cortex.

[41]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[42]  Milan Lukić,et al.  Stochastic processes with sample paths in reproducing kernel Hilbert spaces , 2001 .

[43]  S. C. Kou From finite sample to asymptotics: A geometric bridge for selection criteria in spline regression , 2004 .

[44]  Daniel C. Alexander,et al.  Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information , 2003, IPMI.

[45]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[46]  Donald Goldfarb,et al.  A numerically stable dual method for solving strictly convex quadratic programs , 1983, Math. Program..