COMPLEX POPULATION DYNAMICS IN THE REAL WORLD: MODELING THE INFLUENCE OF TIME-VARYING PARAMETERS AND TIME LAGS

We propose a class of complex population dynamic models that combines new time-varying parameters and second-order time lags for describing univariate ecological time series data. The Kalman filter and likelihood function were used to estimate parameters of all models in the class for 31 data sets, and Schwarz’s information criterion (SIC) was used to select the best model for each data set. Using the SIC method, models containing density-dependent processes were selected for 23 of the 31 cases examined, while models containing complex density-dependent processes were selected in 19 of these 23 density dependence cases. The density-dependent models identified by SIC had various linear or nonlinear forms, suggesting variable patterns of population regulation in nature. Population dynamics may combine density-dependent, inversely density-dependent, and density-independent processes, which may operate at different times and under different density ranges. These results suggest that our approach offers an adv...

[1]  M. Bulmer,et al.  The statistical analysis of density dependence. , 1975, Biometrics.

[2]  M. Holyoak The frequency of detection of density dependence in insect orders , 1993 .

[3]  David R. Anderson,et al.  Data-Based Selection of an Appropriate Biological Model: The Key to Modern Data Analysis , 1992 .

[4]  M. Hassell,et al.  Insect Population Ecology: An Analytical Approach , 1974 .

[5]  H. Akaike A new look at the statistical model identification , 1974 .

[6]  T. Southwood,et al.  Population Census Data and Key Factor Analysis for the Viburnum Whitefly, Aleurotrachelus jelinekii (Frauenf.), on three Bushes , 1976 .

[7]  C. Elton,et al.  The Ten-Year Cycle in Numbers of the Lynx in Canada , 1942 .

[8]  T. Royama,et al.  Analytical Population Dynamics , 1994, Population and Community Biology Series.

[9]  J. P. Dempster,et al.  Spatial heterogeneity, stochasticity and the detection of density dependence in animal populations , 1986 .

[10]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[11]  Erhard Reschenhofer,et al.  Prediction with vague prior knowledge , 1996 .

[12]  R. F. Morris Single‐Factor Analysis in Population Dynamics , 1959 .

[13]  Peter Turchin,et al.  Population Regulation" Old Arguments and a New Synthesis , 1995 .

[14]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[15]  A. Berryman POPULATION CYCLES OF THE DOUGLAS-FIR TUSSOCK MOTH (LEPIDOPTERA: LYMANTRIIDAE): THE TIME-DELAY HYPOTHESIS , 1978, The Canadian Entomologist.

[16]  M. Hassell,et al.  Insect Population Ecology: An Analytical Approach. , 1975 .

[17]  Pieter W. Otter,et al.  The discrete Kalman filter applied to linear regression models: statistical considerations and an application , 1978 .

[18]  石黒 真木夫,et al.  Akaike information criterion statistics , 1986 .

[19]  M. Taper,et al.  Long-Term Population Analysis of Gray Partridge in Eastern Washington , 1996 .

[20]  S. Sclove Application of model-selection criteria to some problems in multivariate analysis , 1987 .

[21]  J. Guckenheimer,et al.  The dynamics of density dependent population models , 1977, Journal of mathematical biology.

[22]  A. Koehler,et al.  A Comparison of the Akaike and Schwarz Criteria for Selecting Model Order , 1988 .

[23]  William W. Murdoch,et al.  POPULATION REGULATION IN THEORY AND PRACTICE , 1994 .

[24]  A. Sinclair,et al.  Population regulation in animals , 1989 .

[25]  Mark Kot,et al.  Do Strange Attractors Govern Ecological Systems , 1985 .

[26]  D. R. Strong,et al.  Density-vague population change. , 1986, Trends in ecology & evolution.

[27]  Peter Turchin,et al.  Rarity of density dependence or population regulation with lags? , 1990, Nature.

[28]  M. Hassell Detecting regulation in patchily distributed animal populations , 1987 .

[29]  Ian P. Woiwod,et al.  Patterns of density dependence in moths and aphids , 1992 .

[30]  Brian Dennis,et al.  DENSITY DEPENDENCE IN TIME SERIES OBSERVATIONS OF NATURAL POPULATIONS: ESTIMATION AND TESTING' , 1994 .

[31]  G. Diderrich,et al.  The Kalman Filter from the Perspective of Goldberger—Theil Estimators , 1985 .

[32]  H. Klomp The Dynamics of a Field Population of the Pine Looper, Bupalus piniarius L.(Lep., Geom.) , 1966 .

[33]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[34]  Andrew D. Taylor,et al.  Why Do Populations of Southern Pine Beetles (Coleoptera: Scolytidae) Fluctuate? , 1991 .

[35]  M. Brown Denstity Dependence in Insect Host‐Parasitoid Systems: A Comment , 1989 .

[36]  M. A. Wincek Applied Statistical Time Series Analysis , 1990 .

[37]  Peter W. Price,et al.  Population dynamics : new approaches and synthesis , 1996 .

[38]  M. Stone An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .

[39]  T. Royama,et al.  Fundamental Concepts and Methodology for the Analysis of Animal Population Dynamics, with Particular Reference to Univoltine Species , 1981 .

[40]  Mark M Hooten,et al.  Distinguishing forms of statistical density dependence and independence in animal time series data using information criteria , 1995 .

[41]  T. Royama Population Persistence and Density Dependence , 1977 .

[42]  P. Moran The Statistical Analsis of the Canadian Lynx cycle. 1. Structure and Prediction. , 1953 .

[43]  P. Stiling The Frequency of Density Dependence in Insect Host‐Parasitoid Systems , 1987 .

[44]  C. Chatfield Model uncertainty, data mining and statistical inference , 1995 .

[45]  W. Schaffer Order and Chaos in Ecological Systems , 1985 .

[46]  Fred C. Schweppe,et al.  Evaluation of likelihood functions for Gaussian signals , 1965, IEEE Trans. Inf. Theory.

[47]  W. Ricker Stock and Recruitment , 1954 .

[48]  Peter C. Young,et al.  Time-variable parameter and trend estimation in non-stationary economic time series , 1994 .

[49]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[50]  T. Prout,et al.  Competition Among Immatures Affects Their Adult Fertility: Population Dynamics , 1985, The American Naturalist.

[51]  R. Shibata An optimal selection of regression variables , 1981 .

[52]  N. Slade Statistical Detection of Density Dependence from a Series of Sequential Censuses , 1977 .

[53]  R. M. May,et al.  Seeing the wood for the trees: detecting density dependence from existing life-table studies , 1989 .

[54]  M. Solomon,et al.  Dynamics of Insect Populations , 1957 .

[55]  M. Hassell Insect natural enemies as regulating factors , 1985 .

[56]  M. Holyoak Identifying delayed density dependence in time-series data , 1994 .

[57]  Brian Dennis,et al.  ALLEE EFFECTS: POPULATION GROWTH, CRITICAL DENSITY, AND THE CHANCE OF EXTINCTION , 1989 .

[58]  P. Stiling,et al.  Density-dependent processes and key factors in insect populations , 1988 .

[59]  P. Rothery,et al.  The Detection of Density-Dependence from a Series of Annual Censuses. , 1987, Ecology.

[60]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[61]  P. J. den Boer Density dependence and the stabilization of animal numbers : 3. The winter moth reconsidered. , 1988, Oecologia.

[62]  P. J. Boer Density Dependence and the Stabilization of Animal Numbers 2. the Pine Looper , 1986 .

[63]  Peter Turchin,et al.  Complex Dynamics in Ecological Time Series , 1992 .

[64]  M. Hassell,et al.  The Dynamics of the Viburnum Whitefly (Aleurotrachelus jelinekii): A Case Study of Population Regulation , 1987 .

[65]  L. Keith,et al.  Wildlife's ten-year cycle , 1963 .