Gravitational Waves: Sources, Detectors and Searches

Abstract Gravitational wave science should transform in this decade from a study of what has not been seen to a full-fledged field of astronomy in which detected signals reveal the nature of cataclysmic events and exotic objects. The LIGO Scientific Collaboration and Virgo Collaboration have recently completed joint data runs of unprecedented sensitivities to gravitational waves. So far, no gravitational radiation has been seen (although data mining continues). It seems likely that the first detection will come from 2nd-generation LIGO and Virgo interferometers now being installed. These new detectors are expected to detect ∼40 coalescences of neutron star binary systems per year at full sensitivity. At the same time, research and development continues on 3rd-generation underground interferometers and on space-based interferometers. In parallel there is a vigorous effort in the radio pulsar community to detect ∼ several-nHz gravitational waves via the timing residuals from an array of pulsars at different locations in the sky. As the dawn of gravitational wave astronomy nears, this review, intended primarily for interested particle and nuclear physicists, describes what we have learned to date and the prospects for direct discovery of gravitational waves.

[1]  Vincent Loriette,et al.  Measurements of Superattenuator seismic isolation by Virgo interferometer , 2010 .

[2]  S. Shapiro,et al.  Hydrodynamic instability and coalescence of close binary systems , 1993 .

[3]  R. Forward,et al.  Photon-noise-limited laser transducer for gravitational antenna. , 1971, Applied optics.

[4]  et al,et al.  Einstein@Home search for periodic gravitational waves in LIGO S4 data , 2008, 0804.1747.

[5]  M. Zimmermann Revised estimate of gravitational radiation from Crab and Vela pulsars , 1978, Nature.

[6]  B. Gendre,et al.  EARLY OPTICAL OBSERVATIONS OF GAMMA-RAY BURSTS BY THE TAROT TELESCOPES: PERIOD 2001–2008 , 2009, 0902.0898.

[7]  David Blair,et al.  Einstein@Home search for periodic gravitational waves in early S5 LIGO data , 2009 .

[8]  J. H. Taylor,et al.  Pulsar timing and relativistic gravity , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[9]  V. Mandic,et al.  Probing the anisotropies of a stochastic gravitational-wave background using a network of ground-based laser interferometers , 2009, 0910.0858.

[10]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[11]  J. Gunn,et al.  On the Nature of Pulsars. III. Analysis of Observations , 1970 .

[12]  Michele Vallisneri,et al.  Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit , 2003 .

[13]  S. Iguchi,et al.  Orbital Motion in the Radio Galaxy 3C 66B: Evidence for a Supermassive Black Hole Binary , 2003, Science.

[14]  C. Messenger,et al.  Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences. , 2011, Physical review letters.

[15]  J. K. Blackburn,et al.  FIRST SEARCH FOR GRAVITATIONAL WAVES FROM THE YOUNGEST KNOWN NEUTRON STAR , 2010, 1006.2535.

[16]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[17]  Flanagan Sensitivity of the Laser Interferometer Gravitational Wave Observatory to a stochastic background, and its dependence on the detector orientations. , 1993, Physical review. D, Particles and fields.

[18]  C. Broeck,et al.  Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz , 2011, 1112.5004.

[19]  Pair-Instability Supernovae, Gravity Waves, and Gamma-Ray Transients , 2000, astro-ph/0007176.

[20]  First joint search for gravitational-wave bursts in LIGO and GEO 600 data , 2008, 0807.2834.

[21]  M. M. Casey,et al.  Upper limits on gravitational wave bursts in LIGO's second science run , 2005 .

[22]  Thibault Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000 .

[23]  M. M. Casey,et al.  Upper limits from the LIGO and TAMA detectors on the rate of gravitational-wave bursts , 2005 .

[24]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[25]  C. Broeck,et al.  SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS , 2010, 1011.4079.

[26]  J. Weber Evidence for discovery of gravitational radiation , 1969 .

[27]  R. Isaacson Gravitational Radiation in the Limit of High Frequency. I. The Linear Approximation and Geometrical Optics , 1968 .

[28]  M. M. Casey,et al.  Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries , 2006 .

[29]  Mertz,et al.  Observation of squeezed states generated by four-wave mixing in an optical cavity. , 1985, Physical review letters.

[30]  B. J. Meers The frequency response of interferometric gravitational wave detectors , 1989 .

[31]  Alan D. Martin,et al.  Review of Particle Physics , 2010 .

[32]  Gravitational wave bursts from cosmic strings , 2000, Physical review letters.

[33]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[34]  Lech Mankiewicz,et al.  General overview of the "Pi of the Sky" system , 2009, Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (WILGA).

[35]  T. Hayler,et al.  Search for gravitational waves from binary black hole inspiral, merger and ringdown , 2011, 1102.3781.

[36]  K. S. Thorne,et al.  Implications For The Origin Of GRB 051103 From LIGO Observations , 2012, 1201.4413.

[37]  Albert A. Mullin,et al.  Extraction of signals from noise , 1970 .

[38]  S. Klimenko,et al.  Search for Gravitational Wave Bursts from Soft Gamma Repeaters , 2008, 0808.2050.

[39]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[40]  New cosmic microwave background constraint to primordial gravitational waves. , 2006, Physical review letters.

[41]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[42]  K. Kuroda,et al.  The status of LCGT , 2006 .

[43]  Upper limits on a stochastic background of gravitational waves. , 2005, Physical review letters.

[44]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[45]  J. Papaloizou,et al.  Gravitational radiation and the stability of rotating stars , 1978 .

[46]  A gravimeter to monitor the 0 S 0 dilational mode of the Earth , 1965 .

[47]  K. Riles,et al.  An all-sky search algorithm for continuous gravitational waves from spinning neutron stars in binary systems , 2011, 1103.1301.

[48]  B. Krishnan,et al.  Improved Stack-Slide Searches for Gravitational-Wave Pulsars , 2005, gr-qc/0505082.

[49]  C. Ott,et al.  A new mechanism for gravitational-wave emission in core-collapse supernovae. , 2006, Physical review letters.

[50]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[51]  et al,et al.  Detector description and performance for the first coincidence observations between LIGO and GEO , 2004 .

[52]  P. Sarin,et al.  First LIGO search for gravitational wave bursts from cosmic (super)strings , 2009 .

[53]  Michele Vallisneri,et al.  Erratum: Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit [Phys. Rev. D67, 104025 (2003)] , 2006 .

[54]  B. Kocsis,et al.  Repeated bursts from relativistic scattering of compact objects in galactic nuclei , 2011, 1109.4170.

[55]  I Wilmut,et al.  All-sky LIGO search for periodic gravitational waves in the early fifth-science-run data. , 2009, Physical review letters.

[56]  T. Hayler,et al.  Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run , 2006 .

[57]  M. Tinto,et al.  Near optimal solution to the inverse problem for gravitational-wave bursts. , 1989, Physical review. D, Particles and fields.

[58]  K. S. Thorne,et al.  A First Search for Coincident Gravitational Waves and High Energy Neutrinos Using LIGO, Virgo and ANTARES Data from 2007 , 2012, 1205.3018.

[59]  J. K. Blackburn,et al.  Directional limits on persistent gravitational waves using LIGO S5 science data. , 2011, Physical review letters.

[60]  R. A. Silverman,et al.  Extraction of Signals from Noise. , 1963 .

[61]  J. Tyson,et al.  Gravitational-Wave Astronomy , 1978 .

[62]  Bernard F. Schutz,et al.  Gravitational waves from hot young rapidly rotating neutron stars , 1998, gr-qc/9804044.

[63]  Search for continuous gravitational waves from the SN1987A remnant using TAMA300 data , 2003 .

[64]  Results of the first coincident observations by two laser-interferometric gravitational wave detectors , 1996, gr-qc/9605048.

[65]  M. M. Casey,et al.  All-sky search for periodic gravitational waves in LIGO S4 data , 2007, 0708.3818.

[66]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[67]  Y. Levin Runaway Heating by r-Modes of Neutron Stars in Low-Mass X-Ray Binaries , 1998, astro-ph/9810471.

[68]  Joshua R. Smith,et al.  Final Results of the All-sky Search for Gravitational-wave Bursts in the First Joint LIGO-GEO-Virgo Run , 2010 .

[69]  A. Vecchio,et al.  The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays , 2008, 0804.4476.

[70]  Ruderman,et al.  Theory of pulsars: polar gaps, sparks, and coherent microwave radiation , 1975 .

[71]  B. Owen,et al.  Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.

[72]  M. M. Casey,et al.  A Joint Search for Gravitational Wave Bursts with AURIGA and LIGO , 2007, 0710.0497.

[73]  G. Prodi,et al.  Results of the IGEC-2 search for gravitational wave bursts during 2005 , 2007, 0705.0688.

[74]  et al,et al.  Search for gravitational waves from binary inspirals in S3 and S4 LIGO data , 2007, 0704.3368.

[75]  et al,et al.  Search for gravitational waves from galactic and extra-galactic binary neutron stars , 2005, gr-qc/0505041.

[76]  B. Machenschalk,et al.  Pulsar Discovery by Global Volunteer Computing , 2010, Science.

[77]  G. Prodi,et al.  IGEC2: A 17-month search for gravitational wave bursts in 2005-2007 , 2010, 1002.3515.

[78]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[79]  H. Paik Superconducting tunable‐diaphragm transducer for sensitive acceleration measurements , 1976 .

[80]  Balasubramanian,et al.  Erratum: Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters , 1996, Physical review. D, Particles and fields.

[81]  D. Stinebring,et al.  Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers & the Early Universe , 2009, 0902.2968.

[82]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[83]  M. M. Casey,et al.  Search for gravitational-wave bursts in LIGO's third science run , 2006 .

[84]  T. Hayler,et al.  SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN , 2010, 1001.0165.

[85]  Carlton M. Caves,et al.  Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer , 1980 .

[86]  E. J. Howell,et al.  Advanced Gravitational Wave Detectors: List of contributors , 2012 .

[87]  V. Mandic,et al.  Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors , 2011, 1112.1898.

[88]  Edward H. Morgan,et al.  Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars , 2003, Nature.

[89]  David P. Anderson,et al.  SETI@home: an experiment in public-resource computing , 2002, CACM.

[90]  M. Shaltev,et al.  Search for Continuous Gravitational Waves: Optimal StackSlide method at fixed computing cost , 2012, 1201.4321.

[91]  Joshua R. Smith,et al.  LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.

[92]  M. M. Casey,et al.  Search for Gravitational Wave Radiation Associated with the Pulsating Tail of the SGR 1806-20 Hyperflare , 2007 .

[93]  B. Barish,et al.  LIGO and the Detection of Gravitational Waves , 1999 .

[94]  D. Pines,et al.  Neutron star structure: theory, observation, and speculation. , 1976 .

[95]  J. Fabris,et al.  Gravity: An Introduction to Einstein's General Relativity , 2004 .

[96]  Apostolatos Influence of spin-spin coupling on inspiraling compact binaries with M1=M2 and S1=S2. , 1996, Physical review. D, Particles and fields.

[97]  Michael Boyle,et al.  Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project , 2009, 0901.4399.

[98]  M. M. Casey,et al.  Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors , 2004 .

[99]  B. Krishnan,et al.  Designing a cross-correlation search for continuous-wave gravitational radiation from a neutron star in the supernova remnant SNR 1987A , 2011, 1102.4654.

[100]  M. M. Casey,et al.  Limits on gravitational-wave emission from selected pulsars using LIGO data. , 2004, Physical review letters.

[101]  Ryutaro Takahashi,et al.  Status of TAMA300 , 2004 .

[102]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[103]  L. Pinard,et al.  Scattered light noise in gravitational wave interferometric detectors: A statistical approach , 1997 .

[104]  J. Jackson Classical Electrodynamics, 3rd Edition , 1998 .

[105]  I. Heng,et al.  Calibration of the ALLEGRO resonant detector , 2005 .

[106]  et al,et al.  Search for gravitational-wave bursts in the first year of the fifth LIGO science run , 2009, 0905.0020.

[107]  W. Israel in 300 Years of Gravitation , 1988 .

[108]  M. Papa,et al.  LABORATORI NAZIONALI DI FRASCATI SIS-Pubblicazioni , 2009 .

[109]  A. Klotz,et al.  The Zadko Telescope: A Southern Hemisphere Telescope for Optical Transient Searches, Multi-Messenger Astronomy and Education , 2010, Publications of the Astronomical Society of Australia.

[110]  R. McCray,et al.  Supernova 1987A : 20 years after : Supernovae and Gamma-Ray Bursters : Aspen, Colorado, 19-23 February 2007 , 2007 .

[111]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[112]  L. Wen,et al.  Constraining the Properties of Supermassive Black Hole Systems Using Pulsar Timing: Application to 3C 66B , 2004 .

[113]  Bruce Allen,et al.  Exploiting large-scale correlations to detect continuous gravitational waves. , 2009, Physical review letters.

[114]  M. Maggiore Gravitational Waves: Volume 1: Theory and Experiments , 2007 .

[115]  M. M. Casey,et al.  Search for gravitational-wave bursts in LIGO data from the fourth science run , 2007, 0704.0943.

[116]  Jonathan R. Gair,et al.  Cosmology using advanced gravitational-wave detectors alone , 2011, 1108.5161.

[117]  G. Mitselmakher,et al.  A coherent method for detection of gravitational wave bursts , 2004 .

[118]  A. Freise,et al.  Status of VIRGO , 2004 .

[119]  G. Desvignes,et al.  European Pulsar Timing Array , 2008 .

[120]  T. Hayler,et al.  Beating the Spin-Down Limit on Gravitational Wave Emission from the Vela Pulsar , 2011 .

[121]  W. Kells,et al.  Lock acquisition of a gravitational-wave interferometer. , 2002, Optics letters.

[122]  James B. Hartle,et al.  Gravity: An Introduction to Einstein's General Relativity , 2003 .

[123]  P. Saulson If light waves are stretched by gravitational waves, how can we use light as a ruler to detect gravitational waves? , 1997 .

[124]  E. al.,et al.  Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run , 2009, 0904.4910.

[125]  Andrew G. Glen,et al.  APPL , 2001 .

[126]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[127]  Bernard F. Schutz,et al.  Searching for periodic sources with LIGO , 1997, gr-qc/9702050.

[128]  J. K. Blackburn,et al.  Observational Limit on Gravitational Waves from Binary Neutron Stars in the Galaxy , 1999, gr-qc/9903108.

[129]  J. Grove,et al.  PSR J1838−0537: DISCOVERY OF A YOUNG, ENERGETIC GAMMA-RAY PULSAR , 2012, 1207.5333.

[130]  Patrick R Brady,et al.  Searching for periodic sources with LIGO. II. Hierarchical searches , 2000 .

[131]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[132]  Upper limits on gravitational-wave emission in association with the 27 Dec 2004 giant flare of SGR1806-20. , 2005, Physical review letters.

[133]  A. Melatos,et al.  GRAVITATIONAL-WAVE SPIN-DOWN AND STALLING LOWER LIMITS ON THE ELECTRICAL RESISTIVITY OF THE ACCRETED MOUNTAIN IN A MILLISECOND PULSAR , 2010, 1005.2257.

[134]  G. Woan,et al.  Bayesian estimation of pulsar parameters from gravitational wave data , 2005, gr-qc/0508096.

[135]  Savas Dimopoulos,et al.  Gravitational wave detection with atom interferometry , 2007, 0712.1250.

[136]  Bernard F. Schutz,et al.  Secular instability of rotating Newtonian stars. , 1978 .

[137]  Keisuke Goda,et al.  Frequency-resolving spatiotemporal wave-front sensor. , 2004, Optics letters.

[138]  Stuart L. Shapiro,et al.  Rapidly Rotating Neutron Stars in General Relativity: Realistic Equations of State , 1993 .

[139]  Subrahmanyan Chandrasekhar,et al.  Ellipsoidal Figures of Equilibrium , 1969 .

[140]  J. R. Hubbard,et al.  ANTARES: the first undersea neutrino telescope , 2011 .

[141]  Christensen,et al.  Measuring the stochastic gravitational-radiation background with laser-interferometric antennas. , 1992, Physical review. D, Particles and fields.

[142]  A. Vinante Present performance and future upgrades of the AURIGA capacitive readout , 2006 .

[143]  F. Antonucci,et al.  Detection of periodic gravitational wave sources by Hough transform in the f versus plane , 2008, 0807.5065.

[144]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[145]  Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints , 2006, gr-qc/0603115.

[146]  R. Savage,et al.  Calibration of the LIGO displacement actuators via laser frequency modulation , 2010, 1005.3746.

[147]  Searching for gravitational waves from pulsars in binary systems: An all-sky search , 2010 .

[148]  et al,et al.  Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of Ligo's S5 Data , 2022 .

[149]  T. Sakamoto,et al.  A giant γ-ray flare from the magnetar SGR 1806–20 , 2005, Nature.

[150]  Lars Bildsten,et al.  Gravitational Radiation and Rotation of Accreting Neutron Stars , 1998, astro-ph/9804325.

[151]  M. Burgay,et al.  A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics , 2004, Science.

[152]  Kirk McKenzie,et al.  Squeezing in the audio gravitational-wave detection band. , 2004, Physical review letters.

[153]  R. Wagoner Gravitational radiation from accreting neutron stars , 1984 .

[154]  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[155]  Brisson,et al.  Scattered light noise in gravitational wave interferometric detectors: Coherent effects. , 1996, Physical review. D, Particles and fields.

[156]  J. Hough,et al.  Search for continuous gravitational radiation , 1975, Nature.

[157]  Robert L. Forward,et al.  Wideband laser-interferometer gravitational-radiation experiment , 1978 .

[158]  Ivanov,et al.  High sensitivity gravitational wave antenna with parametric transducer readout. , 1995, Physical review letters.

[159]  A. Freise,et al.  Interferometer Techniques for Gravitational-Wave Detection , 2009, Living reviews in relativity.

[160]  N. Christensen,et al.  Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors , 2006, gr-qc/0609131.

[161]  K. S. Thorne,et al.  SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS , 2012, 1205.1124.

[162]  Piotr Jaranowski,et al.  Analysis of Gravitational-Wave Data , 2009 .

[163]  V. Dergachev Loosely coherent searches for sets of well-modeled signals , 2011, 1110.3297.

[164]  M. Landry,et al.  Precise calibration of LIGO test mass actuators using photon radiation pressure , 2009, 0910.5591.

[165]  Gustavo A. Medrano-Cerda,et al.  The Liverpool Telescope: performance and first results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[166]  W. Hajdas,et al.  An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts , 2005, Nature.

[167]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[168]  et al,et al.  Search for periodic gravitational wave sources with the Explorer detector , 2001 .

[169]  P. Saulson Josh Goldberg and the physical reality of gravitational waves , 2011 .

[170]  T. Tauris Spin-Down of Radio Millisecond Pulsars at Genesis , 2012, Science.

[171]  J. K. Blackburn,et al.  Search for gravitational waves from intermediate mass binary black holes , 2012, 1201.5999.

[172]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[173]  Bernard F. Schutz,et al.  Generalized F-statistic : Multiple detectors and multiple gravitational wave pulsars , 2005 .

[174]  David Blair,et al.  Detection of gravitational waves , 2000 .

[175]  David Blair,et al.  First Low-Latency LIGO+Virgo Search for Binary Inspirals and their Electromagnetic Counterparts , 2022 .

[176]  G. Prodi,et al.  Status report and near future prospects for the gravitational wave detector AURIGA , 2002 .

[177]  C. Messenger,et al.  A fast search strategy for gravitational waves from low-mass x-ray binaries , 2007 .

[178]  R. Drever Laser interferometer gravitational radiation detectors , 1983 .

[179]  R. Narayan The birthrate and initial spin period of single radio pulsars , 1987 .

[180]  Duncan A. Brown,et al.  Template banks to search for compact binaries with spinning components in gravitational wave data , 2009, 0904.1715.

[181]  F. Jenet,et al.  Upper Bounds on the Low-Frequency Stochastic Gravitational Wave Background from Pulsar Timing Observations: Current Limits and Future Prospects , 2006, astro-ph/0609013.

[182]  William Emmet,et al.  The QUEST Large Area CCD Camera , 2007, astro-ph/0702590.

[183]  Bernard F. Schutz,et al.  The GEO 600 gravitational wave detector , 2002 .

[184]  L S Finn,et al.  Overview of the BlockNormal event trigger generator , 2004 .

[185]  M. M. Casey,et al.  Upper limits on gravitational wave emission from 78 radio pulsars (Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76, (042001)) , 2007, gr-qc/0702039.

[186]  Umran S. Inan,et al.  Massive disturbance of the daytime lower ionosphere by the giant γ‐ray flare from magnetar SGR 1806–20 , 2007 .

[187]  T. Apostolatos,et al.  Search templates for gravitational waves from precessing, inspiraling binaries. , 1995, Physical review. D, Particles and fields.

[188]  B. Krishnan,et al.  Searching for gravitational waves from Cassiopeia A with LIGO , 2008, 0802.3332.

[189]  Subrahmanyan Chandrasekhar,et al.  Solutions of Two Problems in the Theory of Gravitational Radiation , 1970 .

[190]  The LSC glitch group: monitoring noise transients during the fifth LIGO science run , 2008, 0804.0800.

[191]  Julien Sylvestre,et al.  Time-frequency detection algorithm for gravitational wave bursts , 2002 .

[192]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[193]  T. Hayler,et al.  Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 , 2010 .

[194]  J. Weber Detection and Generation of Gravitational Waves , 1960 .

[195]  S. Klimenko,et al.  A comparison of methods for gravitational wave burst searches from LIGO and Virgo , 2007, gr-qc/0701026.

[196]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[197]  Cosmic rays observed by the resonant gravitational wave detector NAUTILUS , 1999, Physical review letters.

[198]  E. al.,et al.  Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data , 2009, 0905.1654.

[199]  V. Kaspi Grand unification of neutron stars , 2010, Proceedings of the National Academy of Sciences.

[200]  C. Broeck,et al.  Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3 , 2011, 1111.7314.

[201]  A. B. Manukin,et al.  Measurement of Weak Forces in Physics Experiments , 1977 .

[202]  D. Hughes Did Flamsteed see the Cassiopeia A supernova? , 1980, Nature.

[203]  V. Sandberg,et al.  ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM MECHANICAL OSCILLATOR. I. ISSUES OF PRINCIPLE , 1980 .

[204]  K. S. Thorne,et al.  All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run , 2012, 1202.2788.

[205]  T. Sakamoto,et al.  A Swift Gaze into the 2006 March 29 Burst Forest of SGR 1900+14 , 2008, 0805.3919.

[206]  Matthew Pitkin,et al.  Gravitational Wave Detection by Interferometry (Ground and Space) , 2000, Living reviews in relativity.

[207]  V. Kaspi,et al.  High - precision timing of millisecond pulsars. 3: Long - term monitoring of PSRs B1855+09 and B1937+21 , 1994 .

[208]  Limits on direct detection of gravitational waves. , 1994, Physical review. D, Particles and fields.

[209]  J. Cordes,et al.  MINIMUM REQUIREMENTS FOR DETECTING A STOCHASTIC GRAVITATIONAL WAVE BACKGROUND USING PULSARS , 2011, 1106.4047.

[210]  J. Weber,et al.  Upper Limit for Interstellar Millicycle Gravitational Radiation , 1961, Nature.

[211]  Joshua R. Smith,et al.  Implications for the origin of GRB 070201 from LIGO observations , 2007 .

[212]  M. Rakhmanov,et al.  High-frequency corrections to the detector response and their effect on searches for gravitational waves , 2008, 0808.3805.

[213]  L. Cadonati Coherent waveform consistency test for LIGO burst candidates , 2004, gr-qc/0407031.

[214]  L. Sievers,et al.  A passive vibration isolation stack for LIGO: Design, modeling, and testing , 1996 .

[215]  Nils Andersson,et al.  A New class of unstable modes of rotating relativistic stars , 1997, gr-qc/9706075.

[216]  J. G. Jernigan,et al.  Scientific highlights of the HETE-2 mission , 2003 .

[217]  C. Palomba Simulation of a population of isolated neutron stars evolving through the emission of gravitational waves , 2005, astro-ph/0503046.

[218]  M. M. Casey,et al.  Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory , 2007 .

[219]  Alessandra Corsi,et al.  Maximum gravitational-wave energy emissible in magnetar flares , 2011, 1102.3421.

[220]  Peter Fritschel,et al.  Alignment of an interferometric gravitational wave detector. , 1998, Applied optics.

[221]  S. Klimenko,et al.  Localization of gravitational wave sources with networks of advanced detectors , 2011, 1101.5408.

[222]  Takahiro Tanaka,et al.  First search for gravitational waves from inspiraling compact binaries using TAMA300 data , 2001 .

[223]  R. Drever Gravity’s Shadow: The Search for Gravitational Waves , 2005 .

[224]  Stephen Poprocki,et al.  X-Pipeline: an analysis package for autonomous gravitational-wave burst searches , 2009, 0908.3665.

[225]  G. Prodi,et al.  3-Mode Detection for Widening the Bandwidth of Resonant Gravitational Wave Detectors , 2005, gr-qc/0502101.

[226]  J. K. Blackburn,et al.  STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM , 2009 .

[227]  S. Fairhurst Improved source localization with LIGO-India , 2012, 1205.6611.

[228]  Kostas D. Kokkotas,et al.  Quasi-Normal Modes of Stars and Black Holes , 1999, Living reviews in relativity.

[229]  D. Brown,et al.  Detailed comparison of LIGO and Virgo inspiral pipelines in preparation for a joint search , 2008 .

[230]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[231]  C. Broeck,et al.  SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3 , 2012, 1205.2216.

[232]  F. Hoyle,et al.  The effect of interstellar matter on climatic variation , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[233]  A. Weinstein First upper limits from LIGO on gravitational wave bursts , 2004 .

[234]  R. Schnabel,et al.  Quantum engineering of squeezed states for quantum communication and metrology , 2007, 0707.2845.

[235]  E. Morgan,et al.  Quasi-periodic X-ray brightness fluctuations in an accreting millisecond pulsar , 2003, Nature.

[236]  Albert Stebbins,et al.  A Probe of Primordial Gravity Waves and Vorticity , 1997 .

[237]  Improvements in strain calibration for the third LIGO science run , 2005 .

[238]  G. Desvignes,et al.  Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data , 2011, 1103.0576.

[239]  C. Broeck,et al.  All-sky search for periodic gravitational waves in the full S5 LIGO data , 2022 .

[240]  M. Regehr,et al.  Demonstration of a power-recycled Michelson interferometer with Fabry-Perot arms by frontal modulation. , 1995, Optics letters.

[241]  T. Piran,et al.  Neutron Star and Black Hole Binaries in the Galaxy , 1991 .

[242]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[243]  et al,et al.  Search for gravitational waves from primordial black hole binary coalescences in the galactic halo , 2005 .

[244]  Kirk McKenzie,et al.  Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. , 2002, Physical review letters.

[245]  Thorne,et al.  Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.

[246]  M. M. Casey,et al.  Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs , 2008 .

[247]  Michael S. Turner,et al.  The early Universe , 1981, Nature.

[248]  John L. Friedman,et al.  Axial instability of rotating relativistic stars , 1998 .

[249]  P. Wessels,et al.  Stabilized lasers for advanced gravitational wave detectors , 2008 .

[250]  N. University,et al.  Short Gamma-Ray Bursts and Binary Mergers in Spiral and Elliptical Galaxies: Redshift Distribution and Hosts , 2007, 0706.4139.

[251]  Martin M. Fejer,et al.  Analysis of LIGO data for gravitational waves from binary neutron stars , 2004 .

[252]  Y. Minenkov,et al.  Status report on the EXPLORER and NAUTILUS detectors and the present science run , 2006 .

[253]  B. J. Meers,et al.  Automatic alignment of optical interferometers. , 1994, Applied optics.

[254]  E. al.,et al.  Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals , 2007, 0712.2050.

[255]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[256]  J. Smith,et al.  The path to the enhanced and advanced LIGO gravitational-wave detectors , 2009, 0902.0381.

[257]  Eric Poisson,et al.  Gravitational Waves, Volume 1: Theory and Experiments , 2008 .

[258]  Bernard F. Schutz,et al.  Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors , 2005 .

[259]  M. Razzano,et al.  DISCOVERY OF NINE GAMMA-RAY PULSARS IN FERMI LARGE AREA TELESCOPE DATA USING A NEW BLIND SEARCH METHOD , 2011, 1111.0523.

[260]  F. Pacini,et al.  Rotating Neutron Stars, Pulsars and Supernova Remnants , 1968, Nature.

[261]  S. Djorgovski,et al.  The bright optical afterglow of the nearby γ-ray burst of 29 March 2003 , 2003, Nature.

[262]  L. Lindblom,et al.  On the secular instabilities of the Maclaurin spheroids , 1977 .

[263]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[264]  Chongqing,et al.  The Parkes Pulsar Timing Array Project , 2006, Publications of the Astronomical Society of Australia.

[265]  R. Pound,et al.  Electronic frequency stabilization of microwave oscillators. , 1946, The Review of scientific instruments.

[266]  Limits on the Stochastic Gravitational Wave Background from the North American Nanohertz Observatory for Gravitational Waves , 2012, 1201.6641.

[267]  A. Lyne,et al.  The proper motions of 26 pulsars , 1982 .

[268]  Peter R. Saulson Fundamentals of Interferometric Gravitational Wave Detectors , 1994 .

[269]  Keisuke Goda,et al.  A quantum-enhanced prototype gravitational-wave detector , 2008, 0802.4118.

[270]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[271]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[272]  F. Hoyle,et al.  On the Mechanism of Accretion by Stars , 1944 .

[273]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1999 .

[274]  A. Vecchio,et al.  Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.

[275]  E. al.,et al.  Analysis of First LIGO Science Data for Stochastic Gravitational Waves , 2003, gr-qc/0312088.

[276]  G. Mendell,et al.  Does gravitational radiation limit the angular velocities of superfluid neutron stars , 1995 .

[277]  Joshua R. Smith,et al.  A photon pressure calibrator for the GEO 600 gravitational wave detector , 2006 .

[278]  Saul A. Teukolsky,et al.  Saturation of the r-Mode Instability , 2002, astro-ph/0202345.

[279]  B. J. Meers,et al.  Recycling in laser-interferometric gravitational-wave detectors. , 1988, Physical review. D, Particles and fields.

[280]  J. Hough,et al.  Calibration of the Glasgow 10 m prototype laser interferometric gravitational wave detector using photon pressure , 2001 .

[281]  B. Allen,et al.  Blandford's argument: The strongest continuous gravitational wave signal , 2008, 0804.3075.

[282]  J. Creighton Search techniques for gravitational waves from black-hole ringdowns , 1999, gr-qc/9901084.

[283]  P. Saulson How an interferometer extracts and amplifies power from a gravitational wave , 1997 .

[284]  R. Chiao,et al.  Towards MIGO, the matter-wave interferometric gravitational-wave observatory, and the intersection of quantum mechanics with general relativity , 2003, gr-qc/0312096.

[285]  David Blair,et al.  Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run , 2009 .

[286]  A radiometer for stochastic gravitational waves , 2005, gr-qc/0510096.

[287]  Detecting an association between gamma-ray and gravitational wave bursts , 1999, gr-qc/9903101.

[288]  K. Agatsuma,et al.  Thermal-noise-limited underground interferometer CLIO , 2009, 0911.3090.

[289]  Erratum: Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters [Phys. Rev. D 53, 3033 (1996)] , 1996 .

[290]  P. Astone,et al.  STOCHASTIC BACKGROUND OF GRAVITATIONAL WAVES , 2000 .

[291]  B. Krishnan,et al.  Hough transform search for continuous gravitational waves , 2004, gr-qc/0407001.

[292]  Winkler,et al.  Heating by optical absorption and the performance of interferometric gravitational-wave detectors. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[293]  Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search , 2000, gr-qc/0012108.

[294]  G. Brown Neutron star accretion and binary pulsar formation , 1995 .

[295]  E. Phinney The Rate of Neutron Star Binary Mergers in the Universe: Minimal Predictions for Gravity Wave Detectors , 1991 .

[296]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[297]  Carlton M. Caves,et al.  Detection of gravitational waves , 2000 .

[298]  Bruce Allen χ2 time-frequency discriminator for gravitational wave detection , 2005 .

[299]  Bernard F. Schutz,et al.  Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection , 1998 .

[300]  J. K. Blackburn,et al.  SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1 , 2009, 0908.3824.

[301]  N. Mavalvala,et al.  Readout and control of a power-recycled interferometric gravitational-wave antenna. , 2001, Applied optics.

[302]  V. Dergachev On blind searches for noise dominated signals: a loosely coherent approach , 2010, 1003.2178.

[303]  A. Freise,et al.  DC-readout of a signal-recycled gravitational wave detector , 2008, 0811.3242.

[304]  The Bar-Mode Instability in Differentially Rotating Neutron Stars: Simulations in Full General Relativity , 2000, astro-ph/0005378.

[305]  E. al.,et al.  First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds , 2007, gr-qc/0703068.

[306]  R. Krotkov,et al.  Quantum Optics, Experimental Gravitation, and Measurement Theory , 1983 .

[307]  K. S. Thorne,et al.  SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA , 2009, 0909.3583.

[308]  C. Palomba,et al.  A method for detection of known sources of continuous gravitational wave signals in non-stationary data , 2010 .

[309]  I. Mandel,et al.  Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo , 2008, 0805.1689.

[310]  Peter Fritschel,et al.  DC readout experiment in Enhanced LIGO , 2011, 1110.2815.

[311]  N. Arnaud,et al.  Detection of gravitational wave bursts by interferometric detectors , 1999 .

[312]  Kenneth A. Strain,et al.  Design and development of the advanced LIGO monolithic fused silica suspension , 2012 .

[313]  J. McIver Data quality studies of enhanced interferometric gravitational wave detectors , 2012, 1204.2497.