Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: evidence for implication of carboxylate and radicals

[1]  Malawi,et al.  PAGE , 2019, Springer Reference Medizin.

[2]  Huiying Luo,et al.  Revisiting overexpression of a heterologous β-glucosidase in Trichoderma reesei: fusion expression of the Neosartorya fischeri Bgl3A to cbh1 enhances the overall as well as individual cellulase activities , 2016, Microbial Cell Factories.

[3]  A. Ferraz,et al.  Manganese peroxidase and biomimetic systems applied to in vitro lignin degradation in Eucalyptus grandis milled wood and kraft pulps , 2016 .

[4]  R. Jia,et al.  Cloning and expression of a new manganese peroxidase from Irpex lacteus F17 and its application in decolorization of reactive black 5 , 2015 .

[5]  Ángel T. Martínez,et al.  BIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS Description of the first fungal dye-decolorizing peroxidase oxidizing manganese(II) , 2015 .

[6]  Xiaoyu Zhang,et al.  Induction, Purification and Characterization of a Novel Manganese Peroxidase from Irpex lacteus CD2 and Its Application in the Decolorization of Different Types of Dye , 2014, PloS one.

[7]  A. Salamov,et al.  Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi , 2014, Proceedings of the National Academy of Sciences.

[8]  M. Tien,et al.  Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment , 2013, Biotechnology for Biofuels.

[9]  R. Mackie,et al.  Reconstitution of a Thermostable Xylan-Degrading Enzyme Mixture from the Bacterium Caldicellulosiruptor bescii , 2012, Applied and Environmental Microbiology.

[10]  Hong-Gyu Song,et al.  Degradation of Alkylphenols by White Rot Fungus Irpex lacteus and Its Manganese Peroxidase , 2012, Applied Biochemistry and Biotechnology.

[11]  Albee Y. Ling,et al.  The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes , 2012, Science.

[12]  H. Hur,et al.  Isolation of a Gene Responsible for the Oxidation of trans-Anethole to para-Anisaldehyde by Pseudomonas putida JYR-1 and Its Expression in Escherichia coli , 2012, Applied and Environmental Microbiology.

[13]  R. Mackie,et al.  Biochemical and Mutational Analyses of a Multidomain Cellulase/Mannanase from Caldicellulosiruptor bescii , 2012, Applied and Environmental Microbiology.

[14]  Govinda R. Timilsina,et al.  Status and barriers of advanced biofuel technologies: A review , 2011 .

[15]  P. Man,et al.  Isolation and characterization of novel pI 4.8 MnP isoenzyme from white-rot fungus Irpex lacteus , 2010 .

[16]  A. Ferraz,et al.  Linoleic acid peroxidation and lignin degradation by enzymes produced by Ceriporiopsis subvermispora grown on wood or in submerged liquid cultures. , 2010 .

[17]  M. Hofrichter,et al.  DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes , 2010, Applied Microbiology and Biotechnology.

[18]  K. Igarashi,et al.  Real-time quantitative analysis of carbon catabolite derepression of cellulolytic genes expressed in the basidiomycete Phanerochaete chrysosporium , 2008, Applied Microbiology and Biotechnology.

[19]  R. Jia,et al.  Purification of a new manganese peroxidase of the white-rot fungus Schizophyllum sp. F17, and decolorization of azo dyes by the enzyme , 2007 .

[20]  D. Cullen,et al.  Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. , 2007, Fungal genetics and biology : FG & B.

[21]  T. Cajthaml,et al.  Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. , 2006, Research in microbiology.

[22]  K. Piontek,et al.  Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. , 2005, Journal of molecular biology.

[23]  R. Urek,et al.  Purification and partial characterization of manganese peroxidase from immobilized Phanerochaete chrysosporium , 2004 .

[24]  M. Pickard,et al.  Purification, Characterization, and Chemical Modification of Manganese Peroxidase from Bjerkandera adusta UAMH 8258 , 2002, Current Microbiology.

[25]  D. Schlosser,et al.  Laccase-Catalyzed Oxidation of Mn2+ in the Presence of Natural Mn3+ Chelators as a Novel Source of Extracellular H2O2 Production and Its Impact on Manganese Peroxidase , 2002, Applied and Environmental Microbiology.

[26]  M. Hofrichter Review: lignin conversion by manganese peroxidase (MnP) , 2002 .

[27]  M. Hofrichter,et al.  Purification and characterization of manganese peroxidases from the litter-decomposing basidiomycetes Agrocybe praecox and Stropharia coronilla , 2002 .

[28]  F. J. Ruiz-Dueñas,et al.  Expression of Pleurotus eryngii versatile peroxidase in Escherichia coli and optimisation of in vitro folding , 2002 .

[29]  M. Gold,et al.  Lignin peroxidase oxidation of veratryl alcohol: effects of the mutants H82A, Q222A, W171A, and F267L. , 2002, Biochemistry.

[30]  M. Hofrichter,et al.  Conversion of Milled Pine Wood by Manganese Peroxidase from Phlebia radiata , 2001, Applied and Environmental Microbiology.

[31]  K. Piontek,et al.  Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism. , 2001, Journal of molecular biology.

[32]  S. Aust,et al.  Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics , 2000, Applied Microbiology and Biotechnology.

[33]  Peng Huang,et al.  Superoxide dismutase as a target for the selective killing of cancer cells , 2000, Nature.

[34]  T. Watanabe,et al.  Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Ceriporiopsis subvermispora and Bjerkandera adusta. , 2000, European journal of biochemistry.

[35]  S. Aust,et al.  Engineering a Disulfide Bond in Recombinant Manganese Peroxidase Results in Increased Thermostability , 2000, Biotechnology progress.

[36]  K. Hammel,,et al.  Peroxyl radicals are potential agents of lignin biodegradation , 1999, FEBS letters.

[37]  T. Vares,et al.  Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of hydrogen peroxide , 1998, FEBS letters.

[38]  U. Szewzyk,et al.  A study on reducing substrates of manganese‐oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta , 1998, FEBS letters.

[39]  H. Masaki,et al.  Analysis of Cre1 binding sites in the Trichoderma reesei cbh1 upstream region. , 1996, FEMS microbiology letters.

[40]  C. Crestini,et al.  Veratryl alcohol oxidation by manganese-dependent peroxidase from Lentinus edodes , 1996 .

[41]  H. Wariishi,et al.  Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. , 1992, The Journal of biological chemistry.

[42]  G. F. Leatham,et al.  Manganese, Mn-dependent peroxidases, and the biodegradation of lignin. , 1988, Biochemical and biophysical research communications.