Optical-Infrared Spectral Energy Distributions of z > 2 Lyman Break Galaxies

Broadband optical and IR spectral energy distributions are determined for spectroscopically confirmed z > 2 Lyman break objects in the Hubble Deep Field (HDF). These photometric data are compared with spectral synthesis models which take into account the effects of metallicity and of internal reddening due to dust. It is found that, on average, Lyman break objects are shrouded in enough dust [typically E(B - V) ≈ 0.3] to suppress their UV fluxes by a factor of more than 10. The dust-corrected star formation rate in a typical HDF Lyman break object is ~60 h M⊙ yr-1 (q0 = 0.5). Furthermore, these objects are dominated by very young (0.2 Gyr, and a median of ~25 Myr) stellar populations, suggesting that star formation at high redshift is episodic rather than continuous. Typically, these star formation episodes produce ~109 h M⊙ of stars, or ~1/20 of the stellar mass of a present-day L* galaxy.

[1]  N. Vogt,et al.  Keck Spectroscopy of Redshift z ~ 3 Galaxies in the Hubble Deep Field , 1996, astro-ph/9612239.

[2]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[3]  S. Maddox,et al.  The Stromlo-APM redshift survey. I: The luminosity function and space density of galaxies , 1992 .

[4]  D. Hogg,et al.  Near Infrared Imaging of the Hubble Deep Field with the Keck Telescope , 1996, astro-ph/9611070.

[5]  Rodger I. Thompson,et al.  Near-Infrared Camera and Multi-Object Spectrometer Observations of the Hubble Deep Field: Observations, Data Reduction, and Galaxy Photometry , 1999 .

[6]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[7]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[8]  University of Sydney,et al.  Dust in high redshift galaxies , 1997 .

[9]  D. Calzetti,et al.  Dust in Starburst Galaxies , 1997, astro-ph/9705043.

[10]  Mark Dickinson,et al.  Spectroscopy of Lyman Break Galaxies in the Hubble Deep Field , 1996 .

[11]  H. Lin,et al.  Evolution of the Galaxy Population Based on Photometric Redshifts in the Hubble Deep Field , 1997 .

[12]  R. J. Brunner,et al.  The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field , 1997 .

[13]  L. Moustakas,et al.  Keck Spectroscopy of Objects with Lens-like Morphologies in the Hubble Deep Field , 1996, astro-ph/9606153.

[14]  S. Odewahn,et al.  Sub-galactic clumps at a redshift of 2.39 and implications for galaxy formation , 1996, Nature.

[15]  F. Duccio Macchetto,et al.  Hubble space telescope imaging of star-forming galaxies at redshifts Z>3 , 1996 .

[16]  Edward L. Fitzpatrick,et al.  An average interstellar extinction curve for the Large Magellanic Cloud. , 1986 .

[17]  P. Massey,et al.  Massive stars in the field and associations of the magellanic clouds: The upper mass limit, the initial mass function, and a critical test of main-sequence stellar evolutionary theory , 1995 .

[18]  W. Waller The ultraviolet universe at low and high redshift : probing the progress of galaxy evolution : College Park, MD May 1997 , 1997 .

[19]  S. Shectman,et al.  The Luminosity Function of Galaxies in the Las Campanas Redshift Survey , 1996, astro-ph/9602064.

[20]  E. Ellingson,et al.  Optical-IR Spectral Energy Distribution of the Protogalaxy Candidate MS 1512–cB58 , 1996, astro-ph/9605159.

[21]  Linda J. Smith,et al.  Metal Enrichment, Dust, and Star Formation in Galaxies at High Redshifts. III. Zn and CR Abundances for 17 Damped Lyman-Alpha Systems , 1994 .

[22]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[23]  E. Ellingson,et al.  Statistics of close galaxy pairs from a faint-galaxy redshift survey , 1995 .

[24]  C. Leitherer,et al.  H II Galaxies versus Photoionization Models for Evolving Starbursts , 1996 .

[25]  Limin Lu,et al.  Abundances at High Redshifts: The Chemical Enrichment History of Damped Lyα Galaxies , 1996, astro-ph/9606044.

[26]  E. Ellingson,et al.  Hα Imaging of the Candidate Protogalaxy MS 1512–cB58 , 1997 .

[27]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[28]  C. Leitherer,et al.  Atlas of Synthetic Ultraviolet Spectra of Massive Star Populations , 1995 .

[29]  R. Carlberg,et al.  Close Pairs of Field Galaxies in the CNOC1 Redshift Survey , 1996, astro-ph/9608016.

[30]  R. B. Partridge,et al.  Radio Emission from Objects in the Hubble Deep Field , 1997 .

[31]  G. Worthey Comprehensive stellar population models and the disentanglement of age and metallicity effects , 1994 .

[32]  H. C. Yee A FAINT-GALAXY PHOTOMETRY AND IMAGE-ANALYSIS SYSTEM , 1991 .

[33]  C. Leitherer,et al.  The Panchromatic Starburst Intensity Limit at Low and High Redshift , 1997, astro-ph/9704077.

[34]  Lennox L. Cowie,et al.  Redshift Clustering in the Hubble Deep Field , 1996 .

[35]  D. Elbaz,et al.  Observations of the Hubble Deep Field with the Infrared Space Observatory - I. Data reduction, maps and sky coverage , 1997 .

[36]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[37]  Detection of massive forming galaxies at redshifts z>l , 1995, Nature.