Indecomposable Coverings with Homothetic Polygons

We prove that for any convex polygon $$S$$S with at least four sides, or a concave one with no parallel sides, and any $$m>0$$m>0, there is an $$m$$m-fold covering of the plane with homothetic copies of $$S$$S that cannot be decomposed into two coverings.

[1]  Dömötör Pálvölgyi,et al.  Indecomposable Coverings with Concave Polygons , 2010, Discret. Comput. Geom..

[2]  Balázs Keszegh,et al.  Convex Polygons are Self-Coverable , 2014, Discret. Comput. Geom..

[3]  János Pach,et al.  Indecomposable Coverings , 2005, Canadian Mathematical Bulletin.

[4]  Dömötör Pálvölgyi Indecomposable coverings with unit discs , 2013, ArXiv.

[5]  János Pach,et al.  Covering the plane with convex polygons , 1986, Discret. Comput. Geom..

[6]  Márton Elekes,et al.  On splitting infinite-fold covers , 2009, 0911.2774.

[7]  J. Pach Decomposition of multiple packing and covering , 1980 .

[8]  J. Pach,et al.  Survey on Decomposition of Multiple Coverings , 2013 .

[9]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[10]  János Pach,et al.  Unsplittable Coverings in the Plane , 2013, WG.

[11]  Matt Gibson,et al.  Decomposing Coverings and the Planar Sensor Cover Problem , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[12]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[13]  Balázs Keszegh,et al.  Octants are Cover Decomposable , 2011, Electron. Notes Discret. Math..

[14]  Gábor Tardos,et al.  Multiple Coverings of the Plane with Triangles , 2007, Discret. Comput. Geom..

[15]  Géza Tóth,et al.  Convex Polygons are Cover-Decomposable , 2010, Discret. Comput. Geom..