Strongly interacting polaritons in coupled arrays of cavities

[1]  S. Bose,et al.  Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays , 2006, quant-ph/0606159.

[2]  D. Meyer,et al.  Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity , 2006, quant-ph/0603087.

[3]  H. Kimble,et al.  Cavity QED with multiple hyperfine levels , 2006, quant-ph/0606079.

[4]  Warwick P. Bowen,et al.  Observation of strong coupling between one atom and a monolithic microresonator , 2006, Nature.

[5]  H. Azuma Quantum computation with Kerr-nonlinear photonic crystals , 2006, quant-ph/0604086.

[6]  M. Hartmann Minimal length scales for the existence of local temperature , 2006, cond-mat/0607445.

[7]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2005, quant-ph/0512222.

[8]  M. Plenio,et al.  Excitation and entanglement transfer versus spectral gap , 2005, quant-ph/0511185.

[9]  G. Schön,et al.  The Bose‐Hubbard model: from Josephson junction arrays to optical lattices , 2005 .

[10]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[11]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[12]  Pierre M. Petroff,et al.  Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes , 2005, Science.

[13]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[14]  M. Yamashita,et al.  Bose-Hubbard model with attractive interactions , 2005, cond-mat/0501470.

[15]  S. Spillane,et al.  Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics (10 pages) , 2004, quant-ph/0410218.

[16]  P. Zoller,et al.  The cold atom Hubbard toolbox , 2004, cond-mat/0410614.

[17]  Immanuel Bloch,et al.  Tonks–Girardeau gas of ultracold atoms in an optical lattice , 2004, Nature.

[18]  H. Mabuchi,et al.  Feasibility of detecting single atoms using photonic bandgap cavities , 2004, quant-ph/0402093.

[19]  J. Eisert,et al.  Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom , 2004, quant-ph/0402004.

[20]  J. Cirac,et al.  Atomic quantum gases in Kagomé lattices. , 2004, Physical review letters.

[21]  O. Hess,et al.  Existence of temperature on the nanoscale. , 2003, Physical review letters.

[22]  J. Eisert,et al.  Towards quantum entanglement in nanoelectromechanical devices. , 2003, Physical review letters.

[23]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[24]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[25]  Kerry J. Vahala,et al.  Fiber-coupled erbium microlasers on a chip , 2003 .

[26]  K. Vahala,et al.  Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. , 2003, Physical review letters.

[27]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[28]  D. James,et al.  Atomic-vapor-based high efficiency optical detectors with photon number resolution. , 2002, Physical Review Letters.

[29]  A. Imamoğlu High efficiency photon counting using stored light. , 2002, Physical review letters.

[30]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[31]  S. M. Tan,et al.  Polariton analysis of a four-level atom strongly coupled to a cavity mode , 2001, quant-ph/0111161.

[32]  B. Temelkuran,et al.  Tight-binding description of the coupled defect modes in three-dimensional photonic crystals , 2000, Physical review letters.

[33]  Lukin,et al.  Dark-state polaritons in electromagnetically induced transparency , 2000, Physical review letters.

[34]  P. Grangier,et al.  QUANTUM ANALYSIS OF THE PHOTONIC BLOCKADE MECHANISM , 1999 .

[35]  A. Scherer,et al.  Coupled-resonator optical waveguide: a proposal and analysis. , 1999, Optics letters.

[36]  S. Harris,et al.  Light speed reduction to 17 metres per second in an ultracold atomic gas , 1999, Nature.

[37]  A. Imamoğlu,et al.  Photon-photon interactions in cavity electromagnetically induced transparency , 1999, quant-ph/9902005.

[38]  P. Zoller,et al.  Entanglement of Atoms via Cold Controlled Collisions , 1998, quant-ph/9810087.

[39]  D. Walls,et al.  Comment on “Strongly Interacting Photons in a Nonlinear Cavity” , 1998 .

[40]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[41]  P. Knight,et al.  The Quantum jump approach to dissipative dynamics in quantum optics , 1997, quant-ph/9702007.

[42]  Holger Schmidt,et al.  Strongly Interacting Photons in a Nonlinear Cavity , 1997 .

[43]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[44]  A. Imamoğlu,et al.  Giant Kerr nonlinearities obtained by electromagnetically induced transparency. , 1996, Optics letters.

[45]  Mooij,et al.  One-Dimensional Mott Insulator Formed by Quantum Vortices in Josephson Junction Arrays. , 1996, Physical review letters.

[46]  H. V. D. van der Zant,et al.  Field-induced superconductor-to-insulator transitions in Josephson-junction arrays. , 1992, Physical review letters.

[47]  R. Glauber,et al.  Quantum optics of dielectric media. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[48]  Harris,et al.  Nonlinear optical processes using electromagnetically induced transparency. , 1990, Physical review letters.

[49]  Fisher,et al.  Presence of quantum diffusion in two dimensions: Universal resistance at the superconductor-insulator transition. , 1990, Physical review letters.

[50]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.