Seismic Design of Structures and Components in Industrial Units

Industrial units consist of the primary load-carrying structure and various process engineering components, the latter being by far the most important in financial terms. In addition, supply structures such as free-standing tanks and silos are usually required for each plant to ensure the supply of material and product storage. Thus, for the earthquake-proof design of industrial plants, design and construction rules are required for the primary structures, the secondary structures and the supply structures. Within the framework of these rules, possible interactions of primary and secondary structures must also be taken into account. Importance factors are used in seismic design in order to take into account the usually higher risk potential of an industrial unit compared to conventional building structures. Industrial facilities must be able to withstand seismic actions because of possibly wide-ranging damage consequences in addition to losses due to production standstill and the destruction of valuable equipment. The chapter presents an integrated concept for the seismic design of industrial units based on current seismic standards and the latest research results. Special attention is devoted to the seismic design of steel thin-walled silos and tank structures.

[1]  I. Herle,et al.  Hypoplastic model for cohesionless soils with elastic strain range , 1997 .

[2]  Jörg Habenberger,et al.  Beitrag zur Berechnung von nachgiebig gelagerten Behältertragwerken unter seismischen Einwirkungen , 2001 .

[3]  Anil K. Chopra,et al.  Seismic Code Analysis of Buildings without Locating Centers of Rigidity , 1993 .

[4]  Rene W. Luft Vertical Accelerations in Prestressed Concrete Tanks , 1984 .

[5]  C. Petersen,et al.  Dynamik der Baukonstruktionen , 1996 .

[6]  G. Gudehus A COMPREHENSIVE CONSTITUTIVE EQUATION FOR GRANULAR MATERIALS , 1996 .

[7]  Roberto Villaverde,et al.  Seismic Design of Secondary Structures: State of the Art , 1997 .

[8]  F. D. Fischer,et al.  Earthquake Resistant Design of Anchored and Unanchored Liquid Storage Tanks Under Three-Dimensional Earthquake Excitation , 1991 .

[9]  Salvador Ivorra,et al.  Shaking‐table tests of flat‐bottom circular silos containing grain‐like material , 2016 .

[10]  Anestis S. Veletsos,et al.  Dynamics of Solid-Containing Tanks. II: Flexible Tanks , 1998 .

[11]  Anestis S. Veletsos,et al.  Dynamics of Solid-Containing Tanks. I: Rigid Tanks , 1998 .

[12]  D. A. Nethercot,et al.  Designer's guide to EN 1993-1-1 : Eurocode 3: Design of Steel Structures : General Rules and Rules for Buildings /L. Gardner and D. A. Nethercot , 2005 .

[13]  F. Rammerstorfer,et al.  The Stability of Liquid-Filled Cylindrical Shells Under Dynamic Loading , 1982 .

[14]  Hugo Bachmann Neue Tendenzen im Erdbebeningenieurwesen , 2004 .

[15]  J. M. Rotter Structures, stability, silos and granular solids: a personal adventure , 2008 .

[16]  Tomaso Trombetti,et al.  On the evaluation of the horizontal forces produced by grain-like material inside silos during earthquakes , 2012, Bulletin of Earthquake Engineering.

[17]  Choon-Foo Shih,et al.  Failure of liquid storage tanks due to earthquake excitation , 1981 .

[18]  Sashi K. Kunnath,et al.  Adaptive Spectra-Based Pushover Procedure for Seismic Evaluation of Structures , 2000 .

[19]  F. D. Fischer,et al.  Dynamic response of vertically excited liquid storage tanks considering liquid‐soil interaction , 1988 .

[20]  W. Guggenberger Schadensfall, Schadensanalyse und Schadensbehebung eines Silos auf acht Einzelstützen , 1998 .

[21]  A. Haack,et al.  Untersuchungen zum Dämpfungsverhalten hochdisperser, kohäsiver Pulver , 2003 .

[22]  John P. Wolf,et al.  Foundation Vibration Analysis Using Simple Physical Models , 1994 .

[23]  T. S. Hull,et al.  Wall loads in squat steel silos during earthquakes , 1989 .

[24]  D. P. Clough Experimental evaluation of seismic design methods for broad cylindrical tanks , 1977 .

[25]  J. Michael Rotter,et al.  Silos and tanks in research and practice: state of the art and current challenges , 2009 .

[26]  Sigmund A. Freeman,et al.  REVIEW OF THE DEVELOPMENT OF THE CAPACITY SPECTRUM METHOD , 2004 .

[27]  Franz G. Rammerstorfer,et al.  Collapse of earthquake excited tanks , 1988 .

[28]  F. K. Kneubühl,et al.  Repetitorium der Physik , 1990 .

[29]  Franz G. Rammerstorfer,et al.  Storage Tanks Under Earthquake Loading , 1990 .

[30]  G. Housner The dynamic behavior of water tanks , 1963 .

[31]  Damping Characterisation of Particulate Materials Using Low Intensity Vibrations : Effects of Experimental Variables and Their Interpretation , 2003 .

[32]  Konstantin Meskouris,et al.  Granular Material Silos under Dynamic Excitation: Numerical Simulation and Experimental Validation , 2006 .

[33]  M. Fardis,et al.  Designer's guide to EN 1998-1 and en 1998-5 Eurocode 8: Design of structures for earthquake resistance; general rules, seismic actions, design rules for buildings, foundations and retaining structures/ M.Fardis[et al.] , 2005 .

[34]  H. Schmidt Schalenbeulen im Stahlbau: Ein spannendes Bemessungsproblem , 2004 .

[35]  Hans Gehrig Vereinfachte Berechnung flüssigkeitsgefüllter verankerter Kreiszylinderschalen unter Erdbebenbelastung , 2004 .

[36]  Tomaso Trombetti,et al.  Refinements to the Silvestri’s theory for the evaluation of the seismic actions in flat-bottom silos containing grain-like material , 2015, Bulletin of Earthquake Engineering.