Low-threshold topological nanolasers based on the second-order corner state

[1]  Li Ge,et al.  Ultrafast control of vortex microlasers , 2020, Science.

[2]  Q. Gong,et al.  Reconfigurable symmetry-broken laser in a symmetric microcavity , 2020, Nature Communications.

[3]  Qi Jie Wang,et al.  Electrically pumped topological laser with valley edge modes , 2020, Nature.

[4]  M. Steer,et al.  Diabolical points in coupled active cavities with quantum emitters , 2020, Light: Science & Applications.

[5]  Y. Chong,et al.  Nonlinear topological photonics , 2019, Applied Physics Reviews.

[6]  Ian A. D. Williamson,et al.  Higher-order topological insulators in synthetic dimensions , 2019, Light, science & applications.

[7]  Chris Martens,et al.  Theory , 1934, Secrets in Global Governance.

[8]  R. Ma,et al.  A high-performance topological bulk laser based on band-inversion-induced reflection , 2019, Nature Nanotechnology.

[9]  Yan-Feng Chen,et al.  Second-order topology and multidimensional topological transitions in sonic crystals , 2019, Nature Physics.

[10]  C. Seassal,et al.  Lasing at topological edge states in a photonic crystal L3 nanocavity dimer array , 2019, Light, science & applications.

[11]  F. Liu,et al.  Photonic crystal nanocavity based on a topological corner state , 2018, Optica.

[12]  Venkata Vikram Orre,et al.  Photonic quadrupole topological phases , 2018, Nature Photonics.

[13]  Jianwen Dong,et al.  Direct Observation of Corner States in Second-Order Topological Photonic Crystal Slabs. , 2018, Physical review letters.

[14]  Yan-Feng Chen,et al.  Visualization of Higher-Order Topological Insulating Phases in Two-Dimensional Dielectric Photonic Crystals. , 2018, Physical review letters.

[15]  Xian-min Jin,et al.  Direct Observation of Topology from Single-Photon Dynamics. , 2018, Physical review letters.

[16]  Franco Nori,et al.  Second-Order Topological Phases in Non-Hermitian Systems. , 2018, Physical review letters.

[17]  A. Peruzzo,et al.  Quantum interference of topological states of light , 2018, Science Advances.

[18]  R. Katsumi,et al.  Topological photonic crystal nanocavity laser , 2018, Communications Physics.

[19]  M. Steer,et al.  Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes. , 2018, Physical review letters.

[20]  M. Bandres,et al.  Topological insulator laser: Experiments , 2018, Science.

[21]  M. Bandres,et al.  Topological insulator laser: Theory , 2018, Science.

[22]  M. Bandres,et al.  Complex Edge-State Phase Transitions in 1D Topological Laser Arrays , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[23]  E. Waks,et al.  A topological quantum optics interface , 2017, Science.

[24]  Gaurav Bahl,et al.  A quantized microwave quadrupole insulator with topologically protected corner states , 2017, Nature.

[25]  Mohammad Hafezi,et al.  A topological source of quantum light , 2017, Nature.

[26]  Han Zhao,et al.  Topological hybrid silicon microlasers , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[27]  Luis Guillermo Villanueva,et al.  Observation of a phononic quadrupole topological insulator , 2017, Nature.

[28]  Florian Bayer,et al.  Topolectrical-circuit realization of topological corner modes , 2017, Nature Physics.

[29]  Kevin P. Chen,et al.  Topological protection of photonic mid-gap defect modes , 2016, Nature Photonics.

[30]  Abdelkrim El Amili,et al.  Nonreciprocal lasing in topological cavities of arbitrary geometries , 2017, Science.

[31]  Yasuhiko Arakawa,et al.  Thresholdless quantum dot nanolaser. , 2017, Optics express.

[32]  P. Brouwer,et al.  Reflection-Symmetric Second-Order Topological Insulators and Superconductors. , 2017, Physical review letters.

[33]  I. Sagnes,et al.  Lasing in topological edge states of a one-dimensional lattice , 2017, 1704.07310.

[34]  F. Liu,et al.  Novel Topological Phase with a Zero Berry Curvature. , 2017, Physical review letters.

[35]  Wladimir A. Benalcazar,et al.  Quantized electric multipole insulators , 2016, Science.

[36]  M. Notomi,et al.  Systematic study of thresholdless oscillation in high-β buried multiple-quantum-well photonic crystal nanocavity lasers. , 2016, Optics express.

[37]  Yong-hee Lee,et al.  Sub-microWatt threshold nanoisland lasers , 2015, Nature Communications.

[38]  Xiao Hu,et al.  Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material. , 2015, Physical review letters.

[39]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[40]  M. Bandres,et al.  Photonic topological insulators , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[41]  M. Hafezi,et al.  Imaging topological edge states in silicon photonics , 2013, Nature Photonics.

[42]  Felix Dreisow,et al.  Photonic Floquet topological insulators , 2012, Nature.

[43]  S. Strauf,et al.  Single quantum dot nanolaser , 2011 .

[44]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[45]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2005, Physical review letters.

[46]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[47]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[48]  Gunnar Björk,et al.  Analysis of semiconductor microcavity lasers using rate equations , 1991 .

[49]  Zak,et al.  Berry's phase for energy bands in solids. , 1989, Physical review letters.

[50]  Charles Darwin,et al.  Experiments , 1800, The Medical and physical journal.