The emergence and evolution of Earth System Science

Earth System Science (ESS) is a rapidly emerging transdisciplinary endeavour aimed at understanding the structure and functioning of the Earth as a complex, adaptive system. Here, we discuss the emergence and evolution of ESS, outlining the importance of these developments in advancing our understanding of global change. Inspired by early work on biosphere–geosphere interactions and by novel perspectives such as the Gaia hypothesis, ESS emerged in the 1980s following demands for a new ‘science of the Earth’. The International Geosphere-Biosphere Programme soon followed, leading to an unprecedented level of international commitment and disciplinary integration. ESS has produced new concepts and frameworks central to the global-change discourse, including the Anthropocene, tipping elements and planetary boundaries. Moving forward, the grand challenge for ESS is to achieve a deep integration of biophysical processes and human dynamics to build a truly unified understanding of the Earth System. Earth System Science (ESS) has emerged as a powerful tool to investigate and understand global change. This Perspective outlines the history of ESS and advocates for the full integration of human and biogeophysical dynamics necessary to build a truly unified ESS effort.

[1]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[2]  William D. Sellers,et al.  A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System. , 1969 .

[3]  M. Budyko The effect of solar radiation variations on the climate of the Earth , 1969 .

[4]  James E. Lovelock,et al.  Atmospheric homeostasis by and for the biosphere: the gaia hypothesis , 1974 .

[5]  W. Broecker,et al.  Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget , 1979, Science.

[6]  F. H. Bormann,et al.  Gaia Hypothesis , 2019, Dictionary of Geotourism.

[7]  J. E. Lovelock,et al.  Life span of the biosphere , 1982, Nature.

[8]  A. Watson,et al.  Biological homeostasis of the global environment: the parable of Daisyworld , 1983 .

[9]  J. Farman,et al.  LARGE LOSSES OF TOTAL OZONE IN ANTARCTICA , 1985 .

[10]  J. Farman,et al.  Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction , 1985, Nature.

[11]  F.P. Bretherton,et al.  Earth system science and remote sensing , 1985, Proceedings of the IEEE.

[12]  Juan G. Roederer,et al.  ICSU gives green light to IGBP , 1986 .

[13]  M M Waldrop,et al.  Washington Embraces Global Earth Sciences: For reasons of science and for reasons of strategy, the funding agencies want to study the earth as an integrated whole. , 1986, Science.

[14]  S. Warren,et al.  Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate , 1987, Nature.

[15]  R. Cassen Our common future: report of the World Commission on Environment and Development , 1987 .

[16]  Chunglin Kwa,et al.  Representations of Nature Mediating Between Ecology and Science Policy: The Case of the International Biological Programme , 1987 .

[17]  G. R. Brundtland Our Common Future World Commission on Environment and Development , 1987 .

[18]  J. Dille,et al.  Something New under the Sun , 1906 .

[19]  Michel Benarie,et al.  Sustainable development of the biosphere , 1988 .

[20]  James W. Kirchner,et al.  The Gaia hypothesis: Can it be tested? , 1989 .

[21]  Leslie A. Real,et al.  The Sustainable Biosphere Initiative: An Ecological Research Agenda: A Report from the Ecological Society of America , 1991 .

[22]  Irene Gendzier,et al.  The New Research Agenda , 1992 .

[23]  Chunglin Kwa,et al.  Modeling the Grasslands , 1993 .

[24]  H. Mooney,et al.  Human Domination of Earth’s Ecosystems , 1997, Renewable Energy.

[25]  Hans Joachim Schellnhuber,et al.  Earth system analysis : integrating science for sustainability : complemented results of a symposium organized by the Potsdam Institute (PIK) , 1998 .

[26]  H. J. Schellnhuber,et al.  Discourse: Earth System Analysis — The Scope of the Challenge , 1998 .

[27]  H. J. Schellnhuber,et al.  ‘Earth system’ analysis and the second Copernican revolution , 1999, Nature.

[28]  Christopher Stoakes,et al.  The global imperative , 1999 .

[29]  N. Oreskes The Rejection of Continental Drift: Theory and Method in American Earth Science , 1999 .

[30]  Simon A. Levin,et al.  Fragile Dominion: Complexity and the Commons , 1999 .

[31]  Henry D. Jacoby,et al.  Integrated Global System Model for Climate Policy Assessment: Feedbacks and Sensitivity Studies , 1999 .

[32]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[33]  R Seliger,et al.  Laying the foundation. , 2001, Health management technology.

[34]  R. Kasperson,et al.  Sustainability Science , 2019, Critical Skills for Environmental Professionals.

[35]  D. Beerling,et al.  The Terrestrial Biosphere and Global Change: Implications for Natural and Managed Ecosystems. Brian Walker , Will Steffen , Josep Canadell , John Ingram , 2001 .

[36]  P. Crutzen Geology of mankind , 2002, Nature.

[37]  Paul J. Crutzen,et al.  The Indian Ocean Experiment and the Asian Brown Cloud , 2002 .

[38]  Frank Lunkeit,et al.  Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models , 2002 .

[39]  Keith Alverson,et al.  Paleoclimate, global change and the future , 2003 .

[40]  Stephen G. Brush,et al.  The Cambridge History of Science , 2003 .

[41]  Ronald E. Doel,et al.  Constituting the Postwar Earth Sciences , 2003 .

[42]  Guy P. Brasseur,et al.  Atmospheric Chemistry in a Changing World , 2003 .

[43]  Roger A. Pielke,et al.  Vegetation, water, humans and the climate; a new perspective on an interactive system , 2004 .

[44]  H. Lindeboom,et al.  Coastal Fluxes in the Anthropocene , 2005 .

[45]  Chunglin Kwa,et al.  Local Ecologies and Global Science , 2005 .

[46]  W. Steffen,et al.  Global Change and the Earth System: A Planet Under Pressure , 2005 .

[47]  武彦 福島 持続可能性(Sustainability)の要件 , 2006 .

[48]  Lorraine Daston,et al.  The Cambridge History of Science , 2006 .

[49]  Erik M. Conway,et al.  Drowning in data: Satellite oceanography and information overload in the Earth sciences , 2006 .

[50]  Eric F. Lambin,et al.  Land-Use and Land-Cover Change , 2006 .

[51]  Chunglin Kwa,et al.  The programming of interdisciplinary research through informal science-policy interactions , 2006 .

[52]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[53]  P. Crutzen,et al.  The Anthropocene: Are Humans Now Overwhelming the Great Forces of Nature , 2007, Ambio.

[54]  Erik M. Conway,et al.  Atmospheric Science at NASA: A History , 2008 .

[55]  M. Budyko The Effects of Changing the Solar Constant on the Climate of a General Circulation Model , 2008 .

[56]  R. Poole Earthrise: How Man First Saw the Earth , 2008 .

[57]  David Pollard,et al.  Amplification of Cretaceous Warmth by Biological Cloud Feedbacks , 2008, Science.

[58]  Wolfgang Lucht,et al.  Tipping elements in the Earth's climate system , 2008, Proceedings of the National Academy of Sciences.

[59]  Marlyne Sahakian,et al.  Jacques Grinevald, La Biosphère de l’Anthropocène : climat et pétrole, la double menace. Repères transdisciplinaires (1824-2007) , 2009, A contrario.

[60]  F. Chapin,et al.  A safe operating space for humanity , 2009, Nature.

[61]  Witold Pedrycz,et al.  Editorial to the special issue , 2009, TAAS.

[62]  Anand Patwardhan,et al.  Developing a common strategy for integrative global environmental change research and outreach: the Earth System Science Partnership (ESSP) Strategy paper , 2009 .

[63]  Steven G. McNulty,et al.  Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality , 2009 .

[64]  Johannes Stripple,et al.  Earth System governmentality: Reflections on science in the Anthropocene , 2009 .

[65]  Berkeley,et al.  Critical transitions in nature and society , 2009, Choice Reviews Online.

[66]  Jim W Hall,et al.  Imprecise probability assessment of tipping points in the climate system , 2009, Proceedings of the National Academy of Sciences.

[67]  D. C. Harris,et al.  Charles David Keeling and the story of atmospheric CO2 measurements. , 2010, Analytical chemistry.

[68]  E. Aronova,et al.  Big Science and Big Data in Biology: From the International Geophysical Year through the International Biological Program to the Long Term Ecological Research (LTER) Network, 1957––Present , 2010 .

[69]  P. N. Edwards A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming , 2010 .

[70]  Amy Dahan,et al.  Putting the Earth System in a numerical box? The evolution from climate modeling toward global change , 2010 .

[71]  Hein van Bohemen,et al.  Critical Transitions In Nature And Society, Princeton Studies in Complexity, M. Scheffer. Princeton University Press (2009), ISBN 0691122040, 30,95 US$ , 2010 .

[72]  R. Niessner Charles David Keeling and the Story of Atmospheric CO2 Measurements , 2010 .

[73]  O. Walusinski Historical perspectives. , 2010, Frontiers of neurology and neuroscience.

[74]  Unmesh Kher,et al.  A call for collaboration , 2010, Nature.

[75]  J. Lovelock,et al.  Atmospheric homeostasis by and for the biosphere: the gaia hypothesis , 1974 .

[76]  F. A. McInerney,et al.  The Paleocene-Eocene Thermal Maximum: A Perturbation of Carbon Cycle, Climate, and Biosphere with Implications for the Future , 2011 .

[77]  Donald R. Zak,et al.  Ecological Lessons from Free-Air CO2 Enrichment (FACE) Experiments , 2011 .

[78]  Carole L. Crumley,et al.  The Anthropocene: From Global Change to Planetary Stewardship , 2011, AMBIO.

[79]  Élodie Vieille Blanchard,et al.  LES LIMITES À LA CROISSANCE DANS UN MONDE GLOBAL - MODÉLISATIONS, PROSPECTIVES, RÉFUTATIONS , 2011 .

[80]  L. K. Gohar,et al.  How well do integrated assessment models simulate climate change? , 2011 .

[81]  K. Arrow,et al.  Social-ecological systems as complex adaptive systems: modeling and policy implications , 2012, Environment and Development Economics.

[82]  Ronald G. Prinn,et al.  Development and application of earth system models , 2012, Proceedings of the National Academy of Sciences.

[83]  K. Denman,et al.  Ocean fertilization for geoengineering: A review of effectiveness, environmental impacts and emerging governance , 2012 .

[84]  Richard D. Besel Accommodating Climate Change Science: James Hansen and the Rhetorical/Political Emergence of Global Warming , 2013, Science in Context.

[85]  Integrated assessments of linked human-natural systems , 2013 .

[86]  Jeffrey T. Kiehl,et al.  Sensitivity of the Palaeocene–Eocene Thermal Maximum climate to cloud properties , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[87]  Carole L. Crumley,et al.  Reconceptualizing the 'Anthropos' in the Anthropocene: Integrating the social sciences and humanities in global environmental change research , 2013 .

[88]  Christopher B. Field,et al.  Fostering advances in interdisciplinary climate science , 2013, Proceedings of the National Academy of Sciences.

[89]  Jacob Darwin Hamblin,et al.  Arming Mother Nature: The Birth of Catastrophic Environmentalism , 2013 .

[90]  Peter K. Haff,et al.  Humans and technology in the Anthropocene: Six rules , 2014 .

[91]  Simone Turchetti,et al.  The Surveillance Imperative: Geosciences during the Cold War and Beyond , 2014 .

[92]  Simone Turchetti,et al.  The Surveillance Imperative , 2014 .

[93]  Naomi Oreskes,et al.  Science and Technology in the Global Cold War , 2014 .

[94]  Ola Uhrqvist,et al.  Seeing and Knowing the Earth as a System : An Effective History of Global Environmental Change Research as Scientific and Political Practice , 2014 .

[95]  Andreas Malm,et al.  The geology of mankind? A critique of the Anthropocene narrative , 2014 .

[96]  C. Summerhayes,et al.  Earth's Climate Evolution: Summerhayes/Earth's Climate Evolution , 2015 .

[97]  J. Syvitski,et al.  International Geosphere–Biosphere Programme and Earth system science: Three decades of co-evolution , 2015 .

[98]  W. Steffen,et al.  The trajectory of the Anthropocene: The Great Acceleration , 2015 .

[99]  Stefan Cihan Aykut,et al.  Les « limites » du changement climatique , 2015 .

[100]  C. Summerhayes,et al.  Earth's Climate Evolution , 2015 .

[101]  Stefan Cihan Aykut,et al.  Les « limites » du changement climatique. Finitude et abondance dans la crise écologique , 2015 .

[102]  Mannava V. K. Sivakumar,et al.  Global environmental change and vulnerability of Least Developed Countries to extreme events: Editorial on the special issue , 2015 .

[103]  M. Scheffer,et al.  Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models , 2015, Proceedings of the National Academy of Sciences.

[104]  Naomi Oreskes,et al.  When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal , 2015 .

[105]  M. Ha-Duong,et al.  Climate change 2014 - Mitigation of climate change , 2015 .

[106]  S. Levin,et al.  The right incentives enable ocean sustainability successes and provide hope for the future , 2016, Proceedings of the National Academy of Sciences.

[107]  Klaudia Beich,et al.  Gaia A New Look At Life On Earth , 2016 .

[108]  S. Rahmstorf,et al.  Why the right climate target was agreed in Paris , 2016 .

[109]  Harold A. Mooney,et al.  The Millennium Ecosystem Assessment: Testing the Limits of Interdisciplinary and Multi-scale Science , 2016 .

[110]  Scott Kulp,et al.  Consequences of twenty-first-century policy for multi-millennial climate and sea-level change , 2016 .

[111]  Sébastien Dutreuil Gaïa : hypothèse, programme de recherche pour le système terre, ou philosophie de la nature ? , 2016 .

[112]  Michael J. Behrenfeld,et al.  The CAFE model: A net production model for global ocean phytoplankton , 2016 .

[113]  X. Bai,et al.  Re-conceptualizing the Anthropocene: A call for collaboration , 2016 .

[114]  Charles K. Toth,et al.  Remote sensing platforms and sensors: A survey , 2016 .

[115]  Klaus Bosselmann,et al.  The Safe Operating Space Treaty: A new approach to managing our use of the Earth system , 2016 .

[116]  Karen C. Seto,et al.  Down to Earth: Contextualizing the Anthropocene , 2016 .

[117]  J. Rockström,et al.  Social-ecological resilience and biosphere-based sustainability science , 2016 .

[118]  Sebastian Vincent Grevsmühl,et al.  Images, imagination and the global environment: towards an interdisciplinary research agenda on global environmental images , 2016 .

[119]  Naomi Oreskes,et al.  Stratigraphic and Earth System approaches to defining the Anthropocene , 2016, Paul J. Crutzen and the Anthropocene: A New Epoch in Earth’s History.

[120]  V. Brovkin,et al.  Interglacials of the last 800,000 years , 2016 .

[121]  Blair R. Tormey,et al.  Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous , 2016, 1602.01393.

[122]  J. Syvitski,et al.  Plausible and desirable futures in the Anthropocene: A new research agenda , 2016 .

[123]  H. Schellnhuber,et al.  Critical insolation–CO2 relation for diagnosing past and future glacial inception , 2016, Nature.

[124]  Tim R. McVicar,et al.  Global estimation of effective plant rooting depth: Implications for hydrological modeling , 2016 .

[125]  Austin Roberts,et al.  The Shock of the Anthropocene: The Earth, History, and Us , 2016, Process Studies.

[126]  Andrea Berardi,et al.  Learning from one another: evaluating the impact of horizontal knowledge exchange for environmental management and governance , 2016 .

[127]  Timothy M. Lenton,et al.  Earth System Science: A Very Short Introduction , 2016 .

[128]  Helmuth Trischler The Anthropocene , 2016, NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin.

[129]  Thomas S. Lontzek,et al.  Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction , 2016 .

[130]  Erle C. Ellis,et al.  The Anthropocene is functionally and stratigraphically distinct from the Holocene , 2016, Science.

[131]  Bruno Latour,et al.  Facing Gaia: Eight Lectures on the New Climatic Regime , 2017 .

[132]  Y. Malhi The Concept of the Anthropocene , 2017 .

[133]  Sabine Höhler,et al.  Spaceship Earth in the Environmental Age, 1960–1990 , 2017 .

[134]  Juan C. Rocha,et al.  Cascading regime shifts within and across scales , 2018, Science.

[135]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[136]  Emmanuel Saez,et al.  World inequality report 2018 , 2018 .

[137]  M. Scheffer,et al.  Trajectories of the Earth System in the Anthropocene , 2018, Proceedings of the National Academy of Sciences.

[138]  Richard Marens,et al.  Laying the Foundation: Preparing the Field of Business and Society for Investigating the Relationship Between Business and Inequality , 2018 .

[139]  Michael R. Dietrich,et al.  Dreamers, visionaries, and revolutionaries in the life sciences , 2018 .

[140]  T. Lenton,et al.  Climate tipping points — too risky to bet against , 2019, Nature.

[141]  Eliza Northrop,et al.  The ocean is key to achieving climate and societal goals , 2019, Science.

[142]  Marten Scheffer,et al.  Dancing on the volcano: social exploration in times of discontent , 2019, Ecology and Society.

[143]  Matthias Heymann,et al.  Epistemology and Politics in Earth System Modeling: Historical Perspectives , 2019, Journal of Advances in Modeling Earth Systems.

[144]  J. Bongaarts,et al.  Intergovernmental Panel on Climate ChangeSpecial Report on Global Warming of 1.5°CSwitzerland: IPCC, 2018. , 2019, Population and Development Review.

[145]  Nicolás Bourriaud The Great Acceleration , 2019, Coral Empire.

[146]  Philip Conway,et al.  The environment: a history of the idea , 2019, Local Environment.