Quasi-star-free Languages on Infinite Words

Quasi-star-free languages were first introduced and studied by Barrington, Compton, Straubing and Therien within the context of circuit complexity in 1992, and their connections with propositional linear temporal logic were established by Esik and Ito recently. While these results are all for finite words, in this paper we consider the languages on infinite words.

[1]  Dominique Perrin,et al.  On the Expressive Power of Temporal Logic , 1993, J. Comput. Syst. Sci..

[2]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[3]  R. McNaughton Review: J. Richard Buchi, Weak Second-Order Arithmetic and Finite Automata; J. Richard Buchi, On a Decision Method in Restricted second Order Arithmetic , 1963, Journal of Symbolic Logic.

[4]  Howard Straubing,et al.  Regular Languages in NC¹ , 1992, J. Comput. Syst. Sci..

[5]  Roope Kaivola,et al.  Axiomatising Linear Time Mu-calculus , 1995, CONCUR.

[6]  Jean-Eric Pin,et al.  On the expressive power of temporal logic for finite words , 1993 .

[7]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[8]  Wolfgang Thomas Computation tree logic and regular omega-languages , 1988, REX Workshop.

[9]  André Arnold,et al.  A Syntactic Congruence for Rational omega-Language , 1985, Theor. Comput. Sci..

[10]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[11]  Wolfgang Thomas,et al.  Star-Free Regular Sets of omega-Sequences , 1979, Inf. Control..

[12]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[13]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[14]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[15]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[16]  Dominique Perrin,et al.  Recent Results on Automata and Infinite Words , 1984, MFCS.

[17]  Zoltán Ésik,et al.  Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata , 2001, Acta Cybern..

[18]  Robert McNaughton,et al.  Counter-Free Automata (M.I.T. research monograph no. 65) , 1971 .

[19]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[20]  Wolfgang Thomas,et al.  Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics , 1990 .

[21]  Berndt Farwer,et al.  ω-automata , 2002 .

[22]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[23]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..

[24]  Grzegorz Rozenberg,et al.  Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency , 1988, Lecture Notes in Computer Science.

[25]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[26]  G. Lallement Semigroups and combinatorial applications , 1979 .