Climate control of terrestrial carbon exchange across biomes and continents

Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45°N). The sensitivity of NEE to mean annual temperature breaks down at ∼ 16 °C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.

J. Randerson | W. Oechel | G. Kiely | K. Klumpp | L. Merbold | J. Soussana | M. Nilsson | E. Dufrene | T. Meyers | A. Goldstein | M. Aubinet | P. Berbigier | C. Bernhofer | A. Ibrom | J. Moncrieff | R. Monson | J. Tenhunen | A. Noormets | R. Ryel | S. Rambal | T. Laurila | W. Massman | H. Margolis | D. Gianelle | G. Katul | B. Cook | P. Bolstad | G. Matteucci | G. Mugnozza | M. Migliavacca | K. Pilegaard | H. Schmid | C. Williams | A. Granier | N. Buchmann | T. Grünwald | B. Heinesch | A. Knohl | G. Manca | F. Miglietta | M. Sanz | D. B. Dail | W. Kutsch | Leonardo Montagnani | E. Moors | C. Rebmann | N. Saigusa | N. Delpierre | M. Goulden | W. Eugster | M. A. Arain | A. Lindroth | B. Loubet | Shaoqiang Wang | J. Pereira | L. Hutley | J. Beringer | Xinquan Zhao | J. Albertson | N. Hanan | R. Leuning | M. Mukelabai | A. Barr | A. Desai | D. Dragoni | H. McCaughey | D. Ricciuto | Xiyan Xu | Bin Zhao | Hai‐Qiang Guo | Jingming Chen | A. Dunn | T. Kolb | C. Ammann | L. Flanagan | K. Pintér | Z. Nagy | Guirui Yu | J. W. Munger | L. Misson | R. Oren | K. Paw U | T. Martin | P. Curtis | M. Sutton | J. Tuovinen | P. Cellier | J. Rinne | F. Bosveld | T. Foken | C. Feigenwinter | A. Hammerle | F. Rossi | J. Elbers | C. Moureaux | Heping Liu | Z. Tuba | S. Burns | M. Mölder | G. Wohlfahrt | B. Drake | C. Pio | R. Clement | M. Aurela | E. Dellwik | M. Marek | G. Pita | P. Ciais | M. Wilkinson | S. Pallardy | S. Wharton | A. Black | G. Starr | C. Vogel | Z. Barcza | M. Falk | P. Lafleur | L. Haszpra | C. von Randow | C. Helfter | T. Johansson | Shijie Han | R. Matamala | M. Broadmeadow | J. Frank | X. Wen | Riccardo Valentini | L. Gu | C. Yi | L. Welp | S. Dore | M. Montes-Helu | M. Jongen | T. Powell | C. Jacobs | Runze Li | Jörgen Sagerfors | L. Aires | N. Roulet | A. C. de Araújo | R. Zampedri | Mario S. Siqueira | Jiquan Chen | S. Yamamoto | M. Myklebust | John Wolbeck | J. Fuhrer | Dimmie Hendriks | Guenther Seufert | Jingxin Wang | Weiguo Wang | Luis M. I. Aires | R. Valentini | Haiqiang Guo | A. D. de Araújo

[1]  E. Solary,et al.  Supplementary Figure S1 , 2012 .

[2]  Kenneth L. Clark,et al.  Ecosystem carbon dioxide fluxes after disturbance in forests of North America , 2010 .

[3]  N. Zeng,et al.  Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections , 2010 .

[4]  Aaron Moody,et al.  Twentieth-Century Droughts and Their Impacts on Terrestrial Carbon Cycling in China , 2009 .

[5]  Yanhong Tang,et al.  Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data , 2008 .

[6]  P. Bakwin,et al.  Links between global CO2 variability and climate anomalies of biomes , 2008 .

[7]  Mark A. Sutton,et al.  Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration , 2008 .

[8]  T. Foken The energy balance closure problem: an overview. , 2008, Ecological applications : a publication of the Ecological Society of America.

[9]  Michael Bahn,et al.  Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management. , 2008, Journal of geophysical research. Atmospheres : JGR.

[10]  M. Heimann,et al.  Terrestrial ecosystem carbon dynamics and climate feedbacks , 2008, Nature.

[11]  M. Aubinet,et al.  Comparison of horizontal and vertical advective CO2 fluxes at three forest sites , 2008 .

[12]  C. Yi,et al.  Momentum Transfer within Canopies , 2008 .

[13]  M. Heimann,et al.  Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes , 2007 .

[14]  P. Hari,et al.  The human footprint in the carbon cycle of temperate and boreal forests , 2007, Nature.

[15]  Allison L. Dunn,et al.  A long‐term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends , 2007 .

[16]  M. Aubinet,et al.  Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites , 2007 .

[17]  J. Palutikof,et al.  Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. , 2007 .

[18]  T. Vesala,et al.  Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation , 2006 .

[19]  Cheng-I Hsieh,et al.  Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy‐covariance measurements , 2006 .

[20]  K. Davis,et al.  A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes , 2006 .

[21]  Haifeng Qian,et al.  Impact of 1998–2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle , 2005 .

[22]  P. Ciais,et al.  Europe-wide reduction in primary productivity caused by the heat and drought in 2003 , 2005, Nature.

[23]  T. Vesala,et al.  On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm , 2005 .

[24]  S. Carpenter,et al.  Global Consequences of Land Use , 2005, Science.

[25]  M. Aubinet,et al.  Comparing CO2 Storage and Advection Conditions at Night at Different Carboeuroflux Sites , 2005 .

[26]  D. Hollinger,et al.  Uncertainty in eddy covariance measurements and its application to physiological models. , 2005, Tree physiology.

[27]  R. Leuning,et al.  Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates , 2005 .

[28]  Michael G. Ryan,et al.  Interpreting, measuring, and modeling soil respiration , 2005 .

[29]  Aaron Moody,et al.  Trends in vegetation activity and their climatic correlates: China 1982 to 1998 , 2004 .

[30]  Haifeng Qian,et al.  How strong is carbon cycle‐climate feedback under global warming? , 2004 .

[31]  Kyaw Tha Paw U,et al.  Carbon Dioxide Exchange Between an Old-growth Forest and the Atmosphere , 2004, Ecosystems.

[32]  C. Tucker,et al.  Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999 , 2003, Science.

[33]  Christian Körner,et al.  Slow in, Rapid out--Carbon Flux Studies and Kyoto Targets , 2003, Science.

[34]  Y. Malhi Carbon in the atmosphere and terrestrial biosphere in the 21st century , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  W. Massman,et al.  Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges , 2002 .

[36]  W. Oechel,et al.  Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation , 2002 .

[37]  Peter E. Thornton,et al.  Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests , 2002 .

[38]  C. Potter,et al.  Interannual variability in global soil respiration, 1980–94 , 2002 .

[39]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[40]  Corinne Le Quéré,et al.  Regional changes in carbon dioxide fluxes of land and oceans since 1980. , 2000, Science.

[41]  Ü. Rannik,et al.  Respiration as the main determinant of carbon balance in European forests , 2000, Nature.

[42]  S. Running,et al.  The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest , 1999, International journal of biometeorology.

[43]  Hans Lambers,et al.  Plant Physiological Ecology , 2000, Springer New York.

[44]  John Moncrieff,et al.  The propagation of errors in long‐term measurements of land‐atmosphere fluxes of carbon and water , 1996 .

[45]  J. William Munger,et al.  Exchange of Carbon Dioxide by a Deciduous Forest: Response to Interannual Climate Variability , 1996, Science.

[46]  S. Goldfeld,et al.  A Markov model for switching regressions , 1973 .